
MicroProfile Reactive Streams
Operators Specification

James Roper, Clement Escoffier

1.0.0-M1, August 09, 2018

Table of Contents
MicroProfile Reactive Streams Operators . 2

Introduction. 3

Rationale . 3

Scope . 3

Reactive Streams API dependency. 4

Design . 5

Reactive Streams Usage Examples . 8

Trivial closed graph . 8

Building a publisher . 8

Building a subscriber . 8

Building a processor . 9

Consuming a publisher. 9

Feeding a subscriber . 10

Similarities and differences with the Java Stream API . 11

Asynchronous processing . 11

No parallel processing . 11

Other differences . 12

SPI. 13

TCK . 14

Structure . 14

API TCK . 14

Running the API TCK . 14

SPI TCK . 15

Running the SPI TCK . 15

Running the TCK in a container. 15

Specification: MicroProfile Reactive Streams Operators Specification

Version: 1.0.0-M1

Status: Draft

Release: August 09, 2018

Copyright (c) 2018 Contributors to the Eclipse Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

MicroProfile Reactive Streams Operators

2

Introduction
This specification defines an API for manipulating Reactive Streams, providing operators such as
map, filter, flatMap, in a similar fashion to the java.util.streams API introduced in Java 8. It also
provides an SPI for implementing and providing custom Reactive Streams engines, allowing
application developers to use whichever engine they see fit.

Rationale
The java.util.streams API provides functionality necessary for manipulating streams in memory
introducing functional programming into the Java language. However, manipulating potentially
infinite asynchronous streams has some very different requirements which the java.util.streams
API is not suitable for.

Reactive Streams is a specification for asynchronous streaming between different libraries and/or
technologies, which is included in JDK9 as the java.util.concurrent.Flow spec. Reactive Streams
itself however is an SPI for library and technology vendors to implement, it is not intended that
application developers implement it as the semantics are very complex.

Commonly, Reactive Streams requires more than just plumbing publishers to subscribers, the
stream typically needs to be manipulated in some way, such as applying operations such as map,
filter and flatMap. Neither Reactive Streams, nor the JDK, provides an API for doing these
manipulations. Since users are not meant to implement Reactive Streams themselves, this means
the only way to do these manipulations currently is to depend on a third party library providing
operators, such as Akka Streams, RxJava or Reactor.

This API seeks to fill that gap, so that MicroProfile application developers can manipulate Reactive
Streams without bringing in a third party dependency. By itself, this API is not interesting to
MicroProfile, but with the addition of other Reactive features, such as the MicroProfile Reactive
Messaging proposal, it is essential.

There are a number of different approaches to handling the cross cutting concerns relating to
actually running streams. These include how and whether context is propagated, concurrency
models, buffering, hooks for monitoring and remoting. Different implementations of Reactive
Streams offer different approaches based on varying opinions on how these cross cutting concerns
should be treated. For this reason, this API provides an underlying SPI to allow different engines to
be plugged in to actually run the streams. Implementors of this spec will provide a default
implementation, however users can select to use a custom implementation if they need.

This specification started as a proposal for the JDK, but after discussions there, it was decided that
the JDK was not the right place to incubate such an API. It is the intention that once incubated in
MicroProfile, this specification will be put to the JDK again as a proposal.

Scope
This specification aims to define a set of operators to manipulate Reactive Streams. The proposed
API is voluntarily close to the java.utils.Stream API.

3

https://doc.akka.io/docs/akka/current/stream/index.html
https://github.com/ReactiveX/RxJava
https://projectreactor.io/

It does not define CDI and container API integrations but implementations may provide
integrations.

Reactive Streams API dependency
Reactive Streams has been included in the JDK9 as the java.util.concurrent.Flow API, which
contains the Publisher, Subscriber, Subscription and Processor interfaces as nested interfaces of
Flow. MicroProfile however is not ready to move to a baseline requirement for JDK9 or above.

For this reason, this proposal uses the JDK6 compatible org.reactivestreams API, which provides
identical Publisher, Subscriber, Subscription and Processor interfaces as members of the
org.reactivestreams package. This dependency contains nothing but those interfaces.

It has been discussed that MicroProfile could copy those interfaces itself, so as to not add this
dependency, however this would most likely frustrate use of Reactive Streams in MicroProfile.
There is a large ecosystem built around the org.reactivestreams interfaces. If application
developers wanted to leverage that ecosystem in their application, they would have to write
adapters to bridge the two APIs. Given that the org.reactivestreams dependency is a jar that
contains only these interfaces, identical to the interfaces in JDK9, there doesn’t seem to be any
value in copying them again into MicroProfile.

To facilitate an eventual migration to the JDK9 interfaces, once MicroProfile adopts JDK9 or later as
a baseline JDK version, all methods that pass org.reactivestreams interfaces to the user (either as a
return value, or by virtue of a user providing a callback to the method to receive it) will have Rs
added to their name. For example, getSubscriber will be called getRsSubscriber. This will allow new
methods to be added in future that return java.util.concurrent.Flow interfaces, without the Rs in
the name, allowing the existing Rs methods to be kept for a limited time for backwards
compatibility. Methods that accept a org.reactivestreams interface do not need to be given the same
treatment, as support for the JDK9 interfaces can be added by overloading them, with backwards
compatibility being maintained (see reactive approach for MicroProfile).

4

https://github.com/eclipse/microprofile-reactive/blob/master/approach.asciidoc

Design
The design of MicroProfile Reactive Streams is centered around builders for the various shapes of
streams. Each builder contains zero or more stages. There are three different shapes of stages:

• Publisher. A publisher stage has an outlet, but no inlet.

stage

• Processor. A processor stage has an inlet and an outlet.

stage

• Subscriber. A subscriber stage has an inlet, but no outlet.

stage

Stream stages can be built into graphs, using the builders. There are four different shapes of graphs
that can be built:

• Publishers. A publisher has one outlet but no inlet, and is represented as a Reactive Streams
Publisher when built. It contains one publisher stage, followed by zero or more processor
stages. This is called a PublisherBuilder

Publisher

• Processors. A processor has one inlet and one outlet, and is represented as a Reactive Streams
Processor when built. It contains zero or more processor stages. This is called a
ProcessorBuilder.

5

Processor

• Subscribers. A subscriber has one inlet but no outlet, and it also has a result. It is represented as
a product of a Reactive Streams Subscriber and a CompletionStage that is redeemed with the
result, or error if the stream fails, when built. It contains zero or more processor stages,
followed by a single subscriber stage. This is called a SubscriberBuilder.

Subscriber

• Closed graphs. A closed graph has no inlet or outlet, both having being provided in during the
construction of the graph. It is represented as a CompletionStage of the result of the stream. It
contains a publisher stage, followed by zero or more processor stages, followed by a subscriber
stage. This is called a CompletionRunner. The result is retrieved using the run method.

Closed Graph

While building a stream, the stream may change shape during its construction. For example, a
publisher may be collected into a List of elements. When this happens, the stream becomes a
closed graph, since there is no longer an outlet, but just a result, the result being the List of
elements:

Here’s an example of a more complex situation where a PublisherBuilder is plumbed to a
SubscriberBuilder, producing a CompletionRunner:

6

PublisherBuilder<Integer> evenIntsPublisher =
 ReactiveStreams.of(1, 2, 3, 4)
 .filter(i -> i % 2 == 0); ①

SubscriberBuilder<Integer, List<Integer>> doublingSubscriber =
 ReactiveStreams.<Integer>builder()
 .map(i -> i = i * 2)
 .toList(); ②

CompletionRunner<List<Integer>> result =
 eventIntsPublisher.to(doublingSubscriber); ③

① A publisher of integers 2 and 4.

② A subscriber that first doubles integers, then collects into a list.

③ A closed graph that when run, will produce the result in a CompletionStage.

of(1,..) filter map toList

map toListof(1,..) filter .to

When MicroProfile specifications provide an API that uses Reactive Streams, it is intended that
application developers can return and pass the builder interfaces directly to the MicroProfile APIs.
In many cases, application developers will not need to run the streams themselves. However,
should they need to run the streams directly themselves, they can do so by using the streams build
or run methods. PublisherBuilder, SubscriberBuilder and ProcessorBuilder all provide a build
method that returns a Publisher, CompletionSubscriber and Processor respectively, while
CompletionRunner, since it actually runs the stream, provides a run method that returns a
CompletionStage.

The CompletionSubscriber class is so named because, where a CompletionStage is a stage of
asynchronous computation that completes with a value or an error, a CompletionSubscriber is
subscriber to an asynchronous stream that completes with a value or an error.

The build and run methods both provide a zero arg variant, which uses the default Reactive Streams
engine provided by the platform, as well as a overload that takes a ReactiveStreamsEngine, allowing
application developers to use a custom engine when they please.

7

Reactive Streams Usage Examples

Trivial closed graph
This just shows the fluency of the API. It wouldn’t make sense to actually do the below in practice,
since the JDK8 streams API itself is better for working with in memory streams.

CompletionStage<Optional<Integer>> result = ReactiveStreams
 .fromIterable(() -> IntStream.range(1, 1000).boxed().iterator())
 .filter(i -> (i & 1) == 1)
 .map(i -> i * 2)
 .collect(Collectors.reducing((i, j) -> i + j))
 .run();

Building a publisher
This shows how common collection types can be converted to a Publisher of the elements in the
collection.

List<MyDomainObject> domainObjects = ...

Publisher<ByteBuffer> publisher = ReactiveStreams
 .fromIterable(domainObjects)
 .buildRs(); ①

① The Rs suffix indicates the method produces a Reactive Streams Publisher.

The above example shows a very simple conversion of a List to a Publisher, of course other
operations can be done on the elements before building the Publisher, in this case we go on to
transform each object to a line in a CSV file, and then represent it as a stream of bytes.

Publisher<ByteBuffer> publisher = ReactiveStreams
 .map(obj -> String.format("%s,%s\n", obj.getField1(), obj.getField2()))
 .map(line -> ByteBuffer.wrap(line.getBytes()))
 .buildRs();

Building a subscriber
This shows building a subscriber for a byte stream, such as for the JDK9 HttpClient API. It assumes
another library has provided a Reactive Streams Processor that parses byte streams into streams of
objects.

8

Processor<ByteBuffer, MyDomainObject> parser = createParser();

CompletionSubscriber<ByteBuffer, List<MyDomainObject>> subscriber =
 ReactiveStreams.<ByteBuffer>builder()
 .via(parser)
 .toList()
 .build();

Subscriber<ByteBuffer> subscriber = subscriber; ①
CompletionStage<List<MyDomainObject>> result = subscriber.getCompletion(); ②

① The object can be deconstructed into the Subscriber part

② The CompletionStage can be retrieve using getCompletion

Building a processor
This shows building a processor, for example, a message library may require processing messages,
and then emitting an ACK identifier so that each handled element can be acknowledged as handled.

Processor<Message<MyDomainObject>, MessageAck> processor =
 ReactiveStreams.<Message<MyDomainObject>>builder()
 .map(message -> {
 handleDomainObject(message.getMessage());
 return message.getMessageAck();
 })
 .buildRs();
 }

Consuming a publisher
A library may provide a Reactive Streams publisher that the application developer needs to
consume. This shows how that can be done.

Publisher<ByteBuffer> bytesPublisher = makeRequest();

Processor<ByteBuffer, MyDomainObject> parser = createParser();

CompletionStage<List<MyDomainObject>> result = ReactiveStreams
 .fromPublisher(bytesPublisher)
 .via(parser)
 .toList()
 .run();

9

Feeding a subscriber
A library may provide a subscriber to feed a connection. This shows how that subscriber can be fed.

List<MyDomainObject> domainObjects = new ArrayList<>();

Subscriber<ByteBuffer> subscriber = createSubscriber();

CompletionStage<Void> completion = ReactiveStreams
 .fromIterable(domainObjects)
 .map(obj -> String.format("%s,%s\n", obj.getField1(), obj.getField2()))
 .map(line -> ByteBuffer.wrap(line.getBytes()))
 .to(subscriber)
 .run();

10

Similarities and differences with the Java
Stream API
The API shares a lot of similarities with the Java Stream API. This similarity has been done on
purpose to ease the adoption of the API. However, there are some differences and this section
highlights them.

Asynchronous processing
The goal of the Reactive Stream Operators specification is to define building blocks to enable the
implementation of asynchronous processing of stream of data. On the other hand, the Java Stream
API provides a synchronous approach to compute a result by analyzing data conveyed in a stream.
Because of this asynchronous vs. synchronous processing, the terminal stages (such as collect,
findFirst…) define by this API return CompletableStage<T> and not T. Indeed, only when the result
has been computed the returned CompletableStage is completed. As an example, here is the two
versions of the same processing:

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

// Java Stream version
int sum = list.stream()
 .map(i -> i + 1)
 .mapToInt(i -> i)
 .sum();
// At the point the sum is computed
System.out.println("sum: " + sum);

// Reactive Streams Operators version
CompletionStage<Integer> future = ReactiveStreams.fromIterable(list)
 .map(i -> i + 1)
 .collect(Collectors.summingInt(i -> i))
 .run();
future.whenComplete((res, err) -> System.out.println("async sum: " + res));

The asynchronous vs. synchronous difference also means that the error propagation works
differently. In the Java Streams API, the processing can be wrapped in a try/catch construct. In the
asynchronous case, the error is propagated into the returned future. In the example above, the
function passed to the whenComplete stage receives the result as well as the failure (if any). If the
processing throws an exception, the function can react by looking at the err parameter.

No parallel processing
The Reactive Streams specification is intrinsically sequential. So none of the parallel processing
ability from the Java Stream API are supported. As a consequence, the API does not provide a
parallel() method. Also, operations like findAny are not provided as the behavior would be
equivalent to the provided findFirst method.

11

https://docs.oracle.com/javase/9/docs/api/java/util/stream/Stream.html

Other differences
• allMatch, anyMatch and nonMatch can be achieved by combining filter and findFirst

• collect(Collector<? super T,A,R> collector) - the combiner part of the collector is not used
because of the sequential nature of Reactive Streams.

• collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R>

combiner) is provided as collect (Supplier<R> supplier, BiConsumer<R,? super T> accumulator).
Indeed, the combiner is not used because of the sequential nature of Reactive Streams.

• count is not provided but can be implemented using .collect(Collectors.counting()) instead.

• findAny is not supported, use findFirst instead. Because of the sequential nature of Reactive
Streams, the method has the same semantic.

• flatMapTo and mapTo are not provided. These can easily be replaced using regular flatMap and
map methods, or methods from Collectors.

• forEachOrdered is not provided as Reactive Streams mandates ordering. So forEach should be
used instead.

• max and min can be achieved using .collect(Collectors.maxBy(…)) and
.collect(Collectors.minBy(…))

• sorted is not supported

• toArray is not supported, toList can be used instead

• onClose is replaced by onComplete. Notice that the API also provides the onError and onTerminate
methods.

12

SPI
The API is responsible for building graphs of stages based on the operators the user invoked. The
stages form an SPI for ReactiveStreamsEngine implementations to build into a running stream.
Examples of stages include:

• Map

• Filter

• Elements to publish

• Collect

• Instances of Reactive Streams Publisher, Subscriber and Processor

Each stage has either an inlet, an outlet, or both. A graph is a sequence of stages, consecutive stages
will have an outlet and and inlet so that they can join - a graph that has a stage with no outlet
followed by a stage that has an inlet is impossible, for example. Only the stages at the ends of the
graph may have no inlet or outlet, whether these end stages have an inlet or outlet determines the
shape of the overall graph. The API is responsible for ensuring that as graphs are constructed, only
graphs that are logically possible are passed to the ReactiveStreamsEngine to construct.

13

TCK
The MicroProfile Reactive Streams Operators TCK is provided to test compliance of
implementations to the specification. It provides a mechanism both for testing implementations
independent from a MicroProfile container, as well as implementations provided by a container.

Structure
There are two parts to the TCK, an API TCK, and an SPI TCK. In addition, the whole TCK can either
be run directly against an SPI implementation, or against a container with an Arquillian adapter.

The TCK uses TestNG for testing, and contains many test classes. These test classes are brought
together using TestNG @Factory annotated methods, so that running the TCK can be done by simply
running a single test class that is a factory for the rest of the test classes.

Additionally, this TCK also uses the Reactive Streams TCK. The Reactive Streams TCK is used to test
Reactive Streams Publishers, Subscribers and Processors to ensure that they conform to the
Reactive Streams spec. Wherever possible, this TCK will use it to verify the Publishers, Subscribers
and Processors built by the API. For example, the returned Processor built by building a simple map
stage is run through the Reactive Streams Processor TCK verification.

It should be noted that the Reactive Streams TCK is structured in such a way that each numbered
requirement in the Reactive Streams specification has a test, even if that requirement is untestable
by the TCK, or if its optional. In the case where requirements are optional or untested, the Reactive
Streams TCK skips the test. Consequently, when running this TCK, there are a significant number of
skipped tests.

API TCK

This tests the API, to ensure that every API call results in the a graph with the right stages being
built. It also tests that the necessary validation, for example for nulls, is done on each API call. The
API TCK is particularly useful for clean room implementations that don’t depend on the Eclipse
MicroProfile Reactive Streams Operators API artifact. Passing the API TCK ensures that different
implementations of the SPI will be compatible with different implementations of the API.

The API TCK doesn’t need an implementation of the SPI to run, and so can be run against any
implementation of the API. It is run as part of the Eclipse MicroProfile Reactive Streams Operators
API’s continuous integration.

Running the API TCK

The API TCK can be run by running the
org.eclipse.microprofile.reactive.streams.tck.api.ReactiveStreamsApiVerification class. For
convenience, implementations might decide to subclass this in their src/test/java folder, so that it
gets automatically picked up and run by build tools like Maven.

14

https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck

SPI TCK

This tests implementations of the SPI, to ensure that each different stage defined by the SPI behaves
correctly, and to ensure that the implementation of that stage conforms to the Reactive Streams
specification. In general, each stage has a verification test, which tests the behavior of that stage,
error, completion and cancellation propagation, and anything else that is necessary for each stage.
Additionally, each stage defines one or more Reactive Streams TCK verification classes, which tests
that the Publisher, Processor or Subscriber built by a graph that contains just that stage conforms to
the Reactive Streams specification.

Running the SPI TCK

The SPI TCK can be run by running the whole TCK (this includes running the API TCK, since the SPI
TCK uses the API to create the stages, it doesn’t make sense to verify an SPI without verifying that
the API on top of it is doing the right thing too).

The whole TCK can be run by creating a subclass of
org.eclipse.microprofile.reactive.streams.tck.ReactiveStreamsTck. This requires passing an
instance of org.reactivestreams.tck.TestEnvironment to the super constructor, which contains
configuration like timeouts. Typically, the timeouts set by using the default constructor for
TestEnvironment should be satisfactory. The createEngine method also needs to be implemented, this
must create and return a ReactiveStreamsEngine for the TCK to test against. Optionally, a
shutdownEngine method can be overridden to shutdown the engine if it holds any resources like
thread pools.

Example 1. An example of using the TCK

public class MyReactiveStreamsTckTest extends ReactiveStreamsTck<MyEngine> {

 public MyReactiveStreamsTckTest() {
 super(new TestEnvironment());
 }

 @Override
 protected MyEngine createEngine() {
 return new MyEngine();
 }

 @Override
 protected void shutdownEngine(MyEngine engine) {
 engine.shutdown();
 }
}

Running the TCK in a container

A test class for running the TCK in a MicroProfile container is provided so that containers can
verify compliance with the spec. This container verification comes in the

15

org.eclipse.microprofile.reactive.streams:microprofile-reactive-streams-operators-tck-

arquillian artifact, which can be added as a dependency to a project that wishes to use it.

To run this TCK, the container must provide a ReactiveStreamsEngine to be tested as an injectable
ApplicationScoped bean, and the MicroProfile Reactive Streams Operators API must be on the
classpath. Having ensured this, the TCK can then be run by executing
org.eclipse.microprofile.reactive.streams.tkc.arquillian.ReactiveStreamsArquillianTck. This
class deploys the TCK to an Arquillian compatible container, and then runs all the tests in the
container in its own configured TestNG suite on the container.

For convenience, implementations may want to subclass this class in their own src/test/java class,
so that it can automatically be run by build tools like Maven.

16

	MicroProfile Reactive Streams Operators Specification
	Table of Contents
	MicroProfile Reactive Streams Operators
	Introduction
	Rationale
	Scope
	Reactive Streams API dependency

	Design
	Reactive Streams Usage Examples
	Trivial closed graph
	Building a publisher
	Building a subscriber
	Building a processor
	Consuming a publisher
	Feeding a subscriber

	Similarities and differences with the Java Stream API
	Asynchronous processing
	No parallel processing
	Other differences

	SPI
	TCK
	Structure
	API TCK
	Running the API TCK

	SPI TCK
	Running the SPI TCK

	Running the TCK in a container

