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Preliminaries

Welcome to wannier90! This is the solution booklet for the examples in the wannier90 v3.1.0
tutorial http://www.wannier.org/doc/tutorial.pdf. Info on the installation process and the theory
of Maximally Localized Wannier Functions (MLWFs) is not reported here as they can be found
elsewhere1. The solutions in this booklet are for the v3.1.0 only! The following (open-source) programs
are required to reproduce the plots and figures in this booklet:

• gnuplot is used to plot bandstructures. It is available for many operating systems and is often
installed by default on Unix/Linux distributions. In particular, we used gnuplot 4.6 patchlevel 6.
http://www.gnuplot.info

• Grace is another plotting tool to visualise bandstructures.
http://plasma-gate.weizmann.ac.il/Grace/

• Vesta is the default 3D visualisation program[1] adopted in this booklet. It is used to visualise
crystal structures, volumetric data (such as WFs and denisities). Download is available for several
OS here: http://jp-minerals.org/vesta/en/.

• XCrySDen is also used to visualise crystal structures and Fermi surfaces in particular. It is available
for Unix/Linux, Windows (using cygwin), and OSX. To correctly display files from wannier90,
version 1.4 or later must be used.
http://www.xcrysden.org

• VMD may also be used to visualise crystal structures and 3D-fields. It can also read a great
variety of input formats and it comes with handy postprocessing tools. http://www.ks.uiuc.
edu/Research/vmd

Disclaimer: All the band structure interpolations have been carried out with ws_distance = .false.,
which is the default value for the version 2.1. However, in the new wannier90 release, corresponding
to version 3.0, the default value of ws_distance has been changed to .true., as, to the best of our
knowledge, the Wigner-Seitz interpolation scheme never lowers the quality of the interpolation and it is
often superior to the default scheme.

About this booklet

This solution manual consists of 24 sections, each containing the solutions, in the form of plots,
tabs, and texts, to the corresponding example in the wannier90 v3.1.0 tutorial! For each example,
only the outline and key questions from the tutorial are reported here. All of the wannier90
input files have been provided. From example 5 onwards, input files for the pwscf interface (http:
//www.quantum-espresso.org) to wannier90 have also been provided. You will need a recent working
version of the quantum espresso package (v6.2 and above), to run these examples. In particular,
you will need pw.x and pw2wannier90.x, as explained in the wannier90 v3.1.0 tutorial. Please visit
http://www.quantum-espresso.org to download the package and follow the instruction on the website
for installation. Further details on how to run the calculations for each example may be found in the
corresponding section of the wannier90 v3.1.0 tutorial. There are interfaces to a number of other
electronic structure codes including: ABINIT (http://www.abinit.org), fleur (http://www.flapw.

1To install wannier90 you can follow the instructions in the readme file of the wannier90 distribution. For an
introduction to the theory, you can look at the wannier90 User guide http://www.wannier.org/user_guide.html, the
wannier90 Tutorial and references therein.

http://www.wannier.org/doc/tutorial.pdf
http://www.gnuplot.info
http://plasma-gate.weizmann.ac.il/Grace/
http://jp-minerals.org/vesta/en/
http://www.xcrysden.org
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www. quantum-espresso.org
http://www. quantum-espresso.org
http://www.quantum-espresso.org
http://www. abinit.org
http://www.flapw.de
http://www.flapw.de
http://www.flapw.de
http://www.wannier.org/user_guide.html
http://www.flapw.de
http://www.flapw.de


4 wannier90 v3.1.0: Solution booklet

de), OpenMX (http://www.openmx-square.org/), GPAW (https://wiki.fysik.dtu.dk/gpaw/),
VASP (http://www.vasp.at), and Wien2K (http://www.wien2k.at).

All the tests were performed on an x86_64 octa-core Intel(R) Xeon(R) CPU E5620 @2.40GHz. Two
packages intel-suite/2015.3.187 and mkl/2015.3.187 were used for the compilation of wannier90.
We expect some of the numerical results to depend on the architecture, the compiler distribution, e.g.
gcc vs gfortran, the version of the compiler and the libraries. However, general trends should not
be affected by these parameters and, in principle, it should be safe to ignore the differences between
different set-ups. If you find that your results are significantly different from the one given in this
booklet, please report it to the wannier90 developers team by opening an issue on the GitHub
repository https://github.com/wannier-developers/wannier90 or by writing an email to the forum
at wannier@quantum-espresso.org (we strongly reccommend the first option). Moreover, if you know
how to solve the issue and you have a fix for it, you can open a pull-request on the GitHub repo.

Contact us

If you have any suggestions on how this solution manual may be improved and for any other issue,
open an issue on the official repository of the wannier90 code on GitHub https://github.com/
wannier-developers/wannier90 or send an email on the forum at
wannier@quantum-espresso.org (we strongly reccommend the former). For the forum note that you
will need to be registered. Emails from non-registered users will be deleted automatically. You can
register by following the links at http://www.wannier.org/forum.html.

http://www.flapw.de
http://www.flapw.de
http://www.openmx-square.org/
https://wiki.fysik.dtu.dk/gpaw/
http://www.vasp.at
http://www.wien2k.at
https://github.com/wannier-developers/wannier90
https://github.com/wannier-developers/wannier90
https://github.com/wannier-developers/wannier90
http://www.wannier.org/forum.html
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1: Gallium Arsenide — MLWFs for the valence bands

• Outline: Obtain and plot MLWFs for the four valence bands of GaAs.

Figure 1: Unit cell of GaAs crystal plotted with the XCrySDen program.

1. Inspect the output file gaas.wout.

Tab. 1 shows the converged values (after 20 iterations) for a 2 × 2 × 2 k -point mesh of the
total spread functional Ω and its three components, i.e. the gauge-invariant component ΩI, the
off-diagonal component of the gauge-dependent part ΩOD, and the diagonal component of the
gauge-dependent part ΩD, respectively. These can be found at the end of the gaas.wout file, from
the line starting with Final State. You will find the MLWF centres and their spreads together
with the information on the spread functional components as reported below, and summarized in
tab.1.

Final State
WF centre and spread 1 ( -0.866253, 1.973841, 1.973841 ) 1.11672024
WF centre and spread 2 ( -0.866253, 0.866253, 0.866253 ) 1.11672024
WF centre and spread 3 ( -1.973841, 1.973841, 0.866253 ) 1.11672024
WF centre and spread 4 ( -1.973841, 0.866253, 1.973841 ) 1.11672024
Sum of centres and spreads ( -5.680188, 5.680188, 5.680188 ) 4.46688098

Spreads (Ang^2) Omega I = 3.956862958
================ Omega D = 0.008030049

Omega OD = 0.501987969
Final Spread (Ang^2) Omega Total = 4.466880976

-----------------------------------------------------------------------------

The geometric centre lies along the Ga-As bond, slightly closer to As than Ga. To see this, we
introduce a measure β defined as

β ,
dGa-MLWF

dGa-As
,

where dGa-MLWF is the distance of the Ga atom placed in the origin and the MLWF centre (along
the Ga-As bond), and dGa-As is the Ga-As bond length, cf. Ref. [2]. A value of 0.5 corresponds to
the MLWF centre being equidistant from the Ga atom and As atom. In our case, we find:

β =
dGa-MLWF(2)

dGa-As
=

0.866253
√

3

1.4200
√

3
≈ 0.61.

Maximum RAM allocated for the wannierisation was 0.06Mb.
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Table 1: Converged values of the components of
spread functional and their sum, given in Å2. Here
β is the distance of the Ga atom placed in the origin
and the MLWF centre (along the Ga-As bond) as a
fraction of the Ga-As bond length 2.4595Å.

MP mesh Ω ΩI ΩOD ΩD β

2× 2× 2 4.467 3.957 0.502 0.008 0.610

2. Plot the MLWFs.

In Fig. 2 are shown the four valence MLWFs as plotted by XCrySDen, where we used the
following parameters in the Tools 7→ Data Grid section:

Xcrysden: Tools 7→ Data Grid

Degree of triCubic Spline = 3; Isovolume = 0.95; Render +/- isovalue = yes

(a) 1st valence MLWF (b) 2nd valence MLWF (c) 3rd valence MLWF (d) 4th valence MLWF

Figure 2: Four valence MLWFs for the Ga-As system plotted using the XCrySDen visualisation
program.

Extra : Plot the 3rd MLWFs in a supercell of size 3. Choose a low value for the isosurface (say 0.5). Can
you explain what you see?

With XCrySDen we can also plot the 3rd MLWF to check its periodicity. The period in each
direction is given by the spacing used to sample the first irreducible Brillouin zone, i.e. the
k -point mesh. We used a 2× 2× 2 k -point mesh, hence we expect to find a periodic image of
our MLWF in a supercell which is 2 times larger than the unit cell along each direction. This is
shown in Fig. 3, where the 3rd has been plotted using both the XCrySDen program and the
vesta program.
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(a) XCrySDen (b) vesta

Figure 3: 3rd MLWF with a supercell value of 3 and for an isovalue of 0.5 using (a) XCrySDen and
(b) vesta.
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2: Lead — Wannier-interpolated Fermi surface

• Outline: Obtain MLWFs for the four lowest states in lead. Use Wannier interpolation to plot the
Fermi surface.

Figure 4: Unit cell of lead crystal plotted with the XCrySDen program.

1. Inspect the output file lead.wout.

A summary of the wannierisation is given in tab.2. At the end of the .wout file you should find
the info on the final state of the minimization as

Final State
WF centre and spread 1 ( 0.397070, 0.397070, 0.397070 ) 1.93781315
WF centre and spread 2 ( 0.397070, -0.397070, -0.397070 ) 1.93781315
WF centre and spread 3 ( -0.397070, 0.397070, -0.397070 ) 1.93781315
WF centre and spread 4 ( -0.397070, -0.397070, 0.397070 ) 1.93781315
Sum of centres and spreads ( 0.000000, -0.000000, -0.000000 ) 7.75125261

Spreads (Ang^2) Omega I = 6.039099038
================ Omega D = 0.007065754

Omega OD = 1.705087819
Final Spread (Ang^2) Omega Total = 7.751252611

------------------------------------------------------------------------------

Table 2: Converged values of the compo-
nents of spread functional and their sum,
given in Å2.

MP mesh Ω ΩI ΩOD ΩD

4× 4× 4 7.751 6.039 0.007 1.705

2. Use Wannier interpolation to generate the Fermi surface of lead.

As can be seen from the bandstructure plot in the wannier90 tutorial, that we report here, cf.
Fig. 5, the four lower valence bands are separated in energy from the higher conduction states
(there is however an indirect band gap). The Fermi level lies somewhere in the middle of the
manifold making crystalline lead a metal. As a results, the states belonging to these manifold
will have partial occupancy. We can see that 2 bands are entirely below and above the Fermi
level, respectively. Hence, no Fermi surface can be plotted from these bands. On the other hand,
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the two central bands do cross the Fermi energy level and the corresponding Fermi surfaces are
shown in Fig. 6.
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Figure 5: Bandstructure of lead showing the position of the Fermi level. Only the lowest four bands
are included in the calculation.
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(a) Energy spectrum of bands (b) band 2 (c) band 3

Figure 6: Fermi surfaces for band 2 and band 3 in lead. The value of the Fermi energy is 5.2676eV,
and it was obtained from the first principle calculation, with a 4× 4× 4 k -point mesh. To calculate
the band energies and to plot Fermi surfaces, Wannier interpolation was employed on a dense mesh in
the Brillouin zone consisting of 503 points.
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3: Silicon — Disentangled MLWFs

• Outline: Obtain disentangled MLWFs for the valence and low-lying conduction states of Si. Plot
the interpolated bandstructure.

Figure 7: Unit cell of Silicon crystal plotted with the XCrySDen program.

1. Inspect the output file silicon.wout.

Starting from 4 sp3 orbitals on each Silicon atom we obtain two sets of 4 WFs, all with the same
spread, that show the sp3 character one would expect from symmetry considerations. A summary
of the wannierisation is given in tab.3. At the end of the .wout file you should find the info on
the final state of the minimization, here we show an extract of the output file

Final State
WF centre and spread 1 ( -0.460754, -0.460711, -0.460767 ) 1.81241746
WF centre and spread 2 ( -0.460743, 0.460722, 0.460718 ) 1.81246400
WF centre and spread 3 ( 0.460703, -0.460761, 0.460685 ) 1.81248774
WF centre and spread 4 ( 0.460704, 0.460724, -0.460764 ) 1.81244947
WF centre and spread 5 ( 1.810128, 1.810112, 1.810113 ) 1.81247628
WF centre and spread 6 ( 1.810097, 0.888662, 0.888617 ) 1.81242110
WF centre and spread 7 ( 0.888640, 1.810140, 0.888660 ) 1.81240614
WF centre and spread 8 ( 0.888643, 0.888652, 1.810090 ) 1.81245230
Sum of centres and spreads ( 5.397417, 5.397539, 5.397353 ) 14.49957450

Spreads (Ang^2) Omega I = 11.849193709
================ Omega D = 0.105470243

Omega OD = 2.544910550
Final Spread (Ang^2) Omega Total = 14.499574503

------------------------------------------------------------------------------

2. Plot the energy bands.

Table 3: Converged values of the compo-
nents of spread functional and their sum,
given in Å2.

MP mesh Ω ΩI ΩOD ΩD

4× 4× 4 14.5 11.849 2.545 0.105
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Figure 8: Bandstructure of Silicon showing the position of the Fermi level and of the inner and outer
windows. Both the 4 valence bands and the 4 low-lying conduction bands are included in the calculation.

As can be seen from DFT bandstructure plot in the wannier90 tutorial, that we report here, cf.
Fig. 8, the four lower valence bands are separated in energy from the higher conduction states
(there is however an indirect band gap). The Fermi level lies inside the gap, making crystalline
Silicon a semiconductor.

The path in k-space given in the tutorial (L-Γ-X-K-Γ) and shown in Fig. 9-(a)-top is the following

begin kpoint_path
L 0.50000 0.50000 0.5000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 X 0.50000 0.00000 0.5000
X 0.50000 -0.50000 0.0000 K 0.37500 -0.37500 0.0000
K 0.37500 -0.37500 0.0000 G 0.00000 0.00000 0.0000
end kpoint_path

which gives the bandstructure shown in Fig. 9-(a)-bottom.

Extra : Try plotting along different paths.

Another path usually used for Silicon is W-Γ-X-W-L-Γ shown in Fig. 8-(b)-top and the corre-
sponding bands are shown in Fig. 9-(b)-bottom. To obtain this path you need to replace the
previous kpoint_path block with the following block

begin kpoint_path
W 0.25000 0.75000 0.50000 G 0.00000 0.00000 0.00000
G 0.00000 0.00000 0.00000 X 0.50000 0.50000 0.00000
X 0.50000 0.50000 0.00000 W -0.25000 0.25000 -0.25000
W -0.25000 0.25000 -0.25000 L 0.00000 0.50000 0.00000
L 0.00000 0.50000 0.00000 G 0.00000 0.00000 0.00000
end kpoint_path
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Figure 9: Bandstructure of Silicon showing the position of the Fermi level and of both the inner and
outer windows. The 4 valence bands together with the 4 low-lying conduction bands are included
in the calculation. Panel a) Interpolation with Wannier90 on the L-Γ-X-K-Γ path in k space (red
dots) and DFT reference bandstructure (solid black). Panel b) Interpolation with Wannier90 on the
W-Γ-X-W-L-Γ path in k space (red dots) and DFT reference bandstructure (solid black).
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4: Copper — Fermi surface, orbital character of energy bands

• Outline: Obtain MLWFs to describe the states around the Fermi-level in copper

Figure 10: Unit cell of Copper crystal plotted with the XCrySDen program.

1. Run wannier90 to minimise the MLWFs spread. Inspect the output file copper.wout.

Starting from 5 d orbitals centred on the Copper atom and 2 s orbitals in the interstitial regions
of the FCC, we obtain the following spreads and centres after 200 iterations (extract from the
copper.wout, a summary of the wannierisation is given in tab.4.):

Final State
WF centre and spread 1 ( -0.000000, 0.000000, -0.000000 ) 0.40838932
WF centre and spread 2 ( -0.000000, -0.000000, -0.000000 ) 0.30784969
WF centre and spread 3 ( -0.000000, -0.000000, 0.000000 ) 0.30784979
WF centre and spread 4 ( -0.000000, -0.000000, 0.000000 ) 0.40838973
WF centre and spread 5 ( 0.000000, -0.000000, -0.000000 ) 0.30784886
WF centre and spread 6 ( -0.902512, 0.902512, 0.902512 ) 1.14385632
WF centre and spread 7 ( 0.902512, -0.902512, -0.902512 ) 1.14385635
Sum of centres and spreads ( 0.000000, -0.000000, -0.000000 ) 4.02804006

Spreads (Ang^2) Omega I = 3.662691490
================ Omega D = 0.001894482

Omega OD = 0.363454087
Final Spread (Ang^2) Omega Total = 4.028040058

------------------------------------------------------------------------------

We can readily see that looking at the individual spreads we find two groups of MLWFs, a group of
5 d-like MLWFs centred on the Copper atom, whose spreads are 0.4084Å2and 0.3078Å2respectively,
and a group of 2 s-like MLWFs centred on two opposite (with respect to the origin) interstitial
points, whose spread is 1.1439Å2. The 3+2 d-like MLWFs are the basis of two representations of
the Oh group, with character t2g and eg respectively.

2. Plot the Fermi surface, it should look familiar! The Fermi energy is at 12.2103 eV.

As explained in example 2 of the tutorial, we need to add the following lines to the input file
(copper.win):

restart = plot
fermi_energy = 12.2103
fermi_surface_plot = true
fermi_surface_num_points = 50
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(a) Energy spectrum of bands
(b) Fermi surface

Figure 11: Fermi surfaces for band 6 in copper. The value of the Fermi energy is 12.2103eV, and it
was obtained from DFT calculation, with a 4× 4× 4 k -point mesh. To calculate the band energies
and to plot Fermi surfaces, Wannier interpolation was employed on a dense mesh in the Brillouin zone
consisting of 503 points.

and re-run the wannier90 executable. The result will be a file named copper.bxsf, which
contains volumetric data in a format suitable for xcrysden. There is only one band that crosses
the Fermi level (12.2103eV), i.e. band 6, as shown in Fig. 11-(a). The corresponding Fermi surface
is shown in Fig. 11-(b)

3. Plot the interpolated bandstructure.

Interpolated bandstructure, with path in k-space given in the tutorial, is shown in Fig. 12.

4. Plot the contribution of the interstitial WF to the bandstructure.

The contribution of the 2 s-like MLWFs to the band structure is shown in Fig. 13

Extra : Investigate the effect of the outer and inner energy window on the interpolated bands.

From now on, we will refer to the inner window energy level as εin and to the outer window energy
level as εout. The reference values are in this case ε0in = 13eV and ε0out = 38eV. Hereafter, we
will use εmin to refer to the minimum energy eigenvalue (for the chosen path). The value of ε0out
must be chosen such that there are at least Nwannier (7 in this case) states inside the outer energy
window for each k -point. This means that for a given path in the BZ there exists a lower bound
to ε0out. The actual value depends on the path in the BZ and on the choice of the zero for the
pseudopotential. The result for several values of εin and εout are shown in Fig. 14.

Table 4: Converged values of the compo-
nents of spread functional and their sum,
given in Å2.

MP mesh Ω ΩI ΩOD ΩD

4× 4× 4 4.028 3.66 0.363 0.002
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Figure 12: Interpolated bandstructure of Copper (solid red) showing the position of the Fermi level
(dashed red) and both inner and outer windows (dotted and dashed-dotted respectively). The reference
DFT bandstructure (solid black) was obtained with Quantum ESPRESSO, see procedure in Example 6.
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Figure 13: Bandstructure of Copper showing the contribution from the 2 s-like MLWFs in red.



16 wannier90 v3.1.0: Solution booklet

 5

 10

 15

 20

 25

 30

 35

 40

 Γ  X  W  L  Γ  K 

in
ne

r 
w

in
do

w

ou
te

r 
w

in
do

w

DFT
Wannier90

(a) εin = 5eV, εout = ε0out
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(b) εin = 9.5eV, εout = ε0out
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(c) εin = ε0in, εout = ε0out

 5

 10

 15

 20

 25

 30

 35

 40

 Γ  X  W  L  Γ  K 

in
ne

r 
w

in
do

w

ou
te

r 
w

in
do

w

DFT
Wannier90

(d) εin = 15eV, εout = ε0out
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(e) εin = εmin, εout = ε0out
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(f) εin = εmin, εout = 45eV

Figure 14: Interpolated bandstructure of Copper (solid red) with DFT reference (solid black) and
different values of the inner window. Panel a) . . .
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5: Diamond — MLWFs for the valence bands

• Outline: Obtain MLWFs for the valence bands of diamond.

Figure 15: Unit cell of Diamond crystal plotted with the XCrySDen program.

1. Run pwscf to obtain the ground state of diamond.

Convergence of the self-consistent field calculation in Quantum Espresso can be checked at the
end of the scf.out file. At the very end of the file one should find the line confirming that the
job has finished without crashing, e.g.

=------------------------------------------------------------------------------=
JOB DONE.

=------------------------------------------------------------------------------=

Depending on the output verbosity one may or may not find info about WALL times for the
calls to the different routines. Just above this block, if present, one may find the info about the
convergence of the SCF loop, such as the scf accuracy and the number of iterations to required to
achieve it:

! total energy = -22.58128615 Ry
Harris-Foulkes estimate = -22.58128615 Ry
estimated scf accuracy < 1.0E-14 Ry

The total energy is the sum of the following terms:

one-electron contribution = 11.69117931 Ry
hartree contribution = 1.57036314 Ry
xc contribution = -7.58421586 Ry
ewald contribution = -28.25861274 Ry

convergence has been achieved in 9 iterations

2. Run pwscf to obtain the Bloch states on a uniform k-point grid.

Similarly for the non-scf calculation one can check that the calculation has been carried out
without crashing by looking at the last three line of the nscf.out file. A useful information to
check is the value of the highest eigenvalue (for insulators and semiconductors) or the value of
the Fermi level (for metals). In the diamond we case, we find:
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highest occupied level (ev): 19.3978

5 Run wannier90 to compute the MLWFs.

The result of the wannierisation, after 20 iterations, may be found at the end of diamond.wout
file:

Final State
WF centre and spread 1 ( -0.000000, 0.000000, -0.000000 ) 0.58022623
WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022623
WF centre and spread 3 ( -0.000000, 0.806995, 0.806995 ) 0.58022623
WF centre and spread 4 ( -0.806995, -0.000000, 0.806995 ) 0.58022623
Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090491

Spreads (Ang^2) Omega I = 1.954619859
================ Omega D = 0.000000000

Omega OD = 0.366285054
Final Spread (Ang^2) Omega Total = 2.320904912

------------------------------------------------------------------------------

Extra : Plot the 4 MLWFs.

The resulting 4 σ-bonding MLWFs are shown in Fig. 16

(a) MLWF 1 (b) MLWF 2 (c) MLWF 3 (d) MLWF 4

Figure 16: 4 MLWFs in diamond describing the valence bands plotted using vesta.
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6: Copper — Fermi surface

• Outline: Obtain MLWFs to describe the states around the Fermi-level in copper.

Figure 17: Unit cell of Copper crystal plotted with the XCrySDen program.

After checking that the calculations have converged as shown in Example 5, one can proceed with other
points in the example.

1. Use Wannier interpolation to obtain the Fermi surface of copper.

To obtain the value of the Fermi energy we can use the grep command (only for Linux/Unix
systems) as:

$ > grep Fermi nscf.out

The output should be:

the Fermi energy is 12.9344 ev

Alternatively, one can open the nscf.out file with the editor of choice and search for "Fermi"
inside the file. We can then use this value in the .win file to compute the Fermi surface as done
in Example 2. The interpolated Fermi surface is shown in Fig. 18-(a).

2. Plot the interpolated bandstructure.

Bandstructure is shown in Fig. 18-(b). One way to obtain the DFT bandstructure on exactly
the same path as the one in the .win input file, is given by the bands.x program available at
http://www.tcm.phy.cam.ac.uk/~jry20/bands.html.

Extra 1: Compare the Wannier interpolated bandstructure with the full pwscf bandstructure. Obtain MLWFs
using a denser k-point grid.

Extra 2: Investigate the effects of the outer and inner energy windows on the interpolated bands.

The effect of different energy windows has already been discussed in the Example 4, so it won’t
be repeated here.

Extra 2: Instead of extracting a subspace of seven states, we could extract a nine dimensional space (i.e.,
with s, p and d character). Examine this case and compare the interpolated bandstructures.

Using s, p, and d orbitals as initial guesses for the MLWFs of Copper, yields the bandstructure
(solid blue) shown in Fig. 19 (with reference values for the inner and outer windows). The

http://www.tcm.phy.cam.ac.uk/~jry20/bands.html
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Figure 18: a) Fermi surface of Copper. b) Band structure of Copper along the Γ–X–W–L–Γ–K
computed from a non-scf DFT calculation (solid black) and via Wannier interpolation (solid red).
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Figure 19: a) Bandstructure of Copper along the Γ–X–W–L–Γ–K from a non-scf DFT calculation
(solid black) and via Wannier interpolation using two different sets of initial projections, namely 2s and
5d (Nw = 7) (solid red) and 1s 3p and 5d (Nw = 9) (solid blue). b) p character of bands computed using
bands_plot_project = 2,3,4 in the input file. A color scheme is used to measure the p character of
the bands.

bandstructure obtained starting from 2s and 5d orbitals is shown in red, whereas the DFT
reference bandstructure, computed with the procedure described above, is in black. It is clear
from Fig. 19(a), and Fig. 19(b) that the bands of interest have very little p character, particularly
the 5 flat bands, which are well very described by d states.



wannier90 v3.1.0: Solution booklet 21

BANDS.X MINITUTORIAL

Here we summarize the main steps to produce the bandstructure with the bands.x code:

• Compilation:

eg. g95 -o bands.x bands.F90
ifort -o bands.x bands.F90
for NAG
f95 -o bands.x bands.F90 -DNAG

• Usage: First you need to generate an copper.inp file, with the following structure

! Input file for Copper
!
! First the unit cell (in atomic units = Bohr)
-3.411 0.000 3.411
0.000 3.411 3.411
-3.411 3.411 0.000

!then the number of points along the 1st special path
100

! then the special kpoints and their labels
G 0.00 0.00 0.00 X 0.50 0.50 0.00
X 0.50 0.50 0.00 W 0.50 0.75 0.25
W 0.50 0.75 0.25 L 0.00 0.50 0.00
L 0.00 0.50 0.00 G 0.00 0.00 0.00
G 0.00 0.00 0.00 K 0.00 0.50 -0.50

Then you need to generate the kpoint list by running the bands.x program with the -pp flag

$ > ./bands.x -pp copper

This will read data from copper.inp and write kpoints into copper_band.kpt.
WARNING: if you already have a copper_band.kpt file from a previous Wannier90 calculation,
running the above command will overwrite it.
Now you need to calculate a non-scf or bands calculation with Quantum ESPRESSO on the
k-points given in copper_band.kpt. To do so, copy the copper.nscf to copper.bands and modify
it accordingly. Run a non-scf calculation

$ > pw.x < copper.bands > copper.pwscf

WARNING: the output file must terminate with .pwscf in order to be read by bands.x.
Now extract the bands from the copper.pwscf file

$ > bands.x copper

The bands are written into copper_band.dat. WARNING: if you already have a coppper_band.dat
file and a copper_band.gnu file from a previous Wannier90 calculation, running the above command
will overwrite them.
Plot with gnuplot

$ > gnuplot –persist copper_band.gnu
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7: Silane (SiH 4 ) — Molecular MLWFs using Γ-point sampling

• Outline: Obtain MLWFs for the valence bands of silane.

Figure 20: Silane molecule in a periodic cell plotted with the XCrySDen program.

1. Convergence of the self-consistent field calculation in Quantum Espresso can be checked at the
end of the scf.out file. At the very end of the file one should find the line confirming that the
job has finished without crashing, e.g.

=------------------------------------------------------------------------------=
JOB DONE.

=------------------------------------------------------------------------------=

Just above the block reporting the info about WALL times, if present, one may find the info
about the convergence of the SCF loop, such as the scf accuracy and the number of iterations to
required to achieve it:

! total energy = -12.25602944 Ry
Harris-Foulkes estimate = -12.25602944 Ry
estimated scf accuracy < 7.0E-11 Ry

The total energy is the sum of the following terms:

one-electron contribution = 11.69117931 Ry
hartree contribution = 1.57036314 Ry
xc contribution = -7.58421586 Ry
ewald contribution = -28.25861274 Ry

convergence has been achieved in 9 iterations

2. Similarly for the non-scf calculation one can check that the calculation has been carried out
without crashing by looking at the last three line of the nscf.out file. A useful information to
check is the value of the highest eigenvalue (for insulators and semiconductors) or the value of
the Fermi level (for metals). In the diamond we case, we find:

highest occupied level (ev): -6.5316

5 The result of the wannierisation, after 20 iterations, may be found at the end of silane.wout file:
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Final State
WF centre and spread 1 ( 0.762490, 0.762490, 0.762490 ) 1.01124580
WF centre and spread 2 ( 0.762491, -0.762492, -0.762491 ) 1.01124445
WF centre and spread 3 ( -0.762491, 0.762490, -0.762491 ) 1.01124473
WF centre and spread 4 ( -0.762491, -0.762491, 0.762491 ) 1.01124420
Sum of centres and spreads ( -0.000002, -0.000003, -0.000001 ) 4.04497917

Spreads (Ang^2) Omega I = 3.920639090
================ Omega D = 0.000000000

Omega OD = 0.124340085
Final Spread (Ang^2) Omega Total = 4.044979175

------------------------------------------------------------------------------
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8: Iron — Spin-polarized WFs, DOS, projected WFs versus MLWFs

• Outline : Generate both maximally-localized and projected Wannier functions for ferromagnetic
bcc Fe. Calculate the total and orbital-projected density of states by Wannier interpolation.

Figure 21: Unit cell of Iron crystal plotted with the XCrySDen program.

1-5 Converged values for the total spread functional and its components for both spin channels are
shown in Tab. 5. The final state for spin-up MLWFs is

Final State
WF centre and spread 1 ( 0.709852, 0.000108, 0.000131 ) 1.08935224
WF centre and spread 2 ( 0.000131, 0.000053, -0.709852 ) 1.08935218
WF centre and spread 3 ( -0.709852, -0.000108, -0.000131 ) 1.08935221
WF centre and spread 4 ( 0.000108, -0.709852, -0.000053 ) 1.08935218
WF centre and spread 5 ( -0.000131, -0.000053, 0.709852 ) 1.08935226
WF centre and spread 6 ( 0.000000, 0.000000, 0.000000 ) 0.43234428
WF centre and spread 7 ( -0.000000, 0.000000, 0.000000 ) 0.43234429
WF centre and spread 8 ( -0.000108, 0.709852, 0.000053 ) 1.08935225
WF centre and spread 9 ( 0.000000, 0.000000, -0.000000 ) 0.43234428
Sum of centres and spreads ( 0.000000, -0.000000, -0.000000 ) 7.83314616

Spreads (Ang^2) Omega I = 5.948424630
================ Omega D = 0.017027691

Omega OD = 1.867693841
Final Spread (Ang^2) Omega Total = 7.833146162

------------------------------------------------------------------------------

and for spin-down MLWFs is
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Table 5: Converged values of the components
of spread functional and their sums for both spin
chanels for ferromagnetic bcc Fe, given in Å2.

spin Ω ΩI ΩOD ΩD Niter

up 7.8331 5.9484 1.8677 0.0170 400
down 7.8496 5.9467 1.8884 0.0145 400

[sharp corners,boxrule=0.5pt]
Final State
WF centre and spread 1 ( -0.685467, -0.000123, 0.000259 ) 1.10268580
WF centre and spread 2 ( -0.000259, -0.000207, -0.685467 ) 1.10268617
WF centre and spread 3 ( 0.685468, 0.000123, -0.000259 ) 1.10268605
WF centre and spread 4 ( -0.000123, 0.685467, -0.000207 ) 1.10268595
WF centre and spread 5 ( 0.000259, 0.000207, 0.685467 ) 1.10268552
WF centre and spread 6 ( 0.000000, 0.000000, -0.000000 ) 0.41116646
WF centre and spread 7 ( -0.000000, 0.000000, -0.000000 ) 0.41116648
WF centre and spread 8 ( 0.000123, -0.685467, 0.000207 ) 1.10268572
WF centre and spread 9 ( 0.000000, 0.000000, 0.000000 ) 0.41116644
Sum of centres and spreads ( 0.000000, -0.000000, 0.000000 ) 7.84961460

Spreads (Ang^2) Omega I = 5.946718376
================ Omega D = 0.014524283

Omega OD = 1.888371944
Final Spread (Ang^2) Omega Total = 7.849614603

------------------------------------------------------------------------------

As it is clear from the output file snippets above, the s, p and d orbitals hybridize to give rise to
two groups of functions for both spin channels. A first group made of 6 MLWFs coming from the
hybridisation of sp3 and deg MLWFs, with a total spread of 1.089(1.103)Å2 for spin-up(down). A
second group made of 3 MLWFs with a dt2g character, with a total spread of 0.432(0.4112)Å2 for
spin-up(down). Two sample MLWFs, one for each group, are shown in Fig. 22.

(a) sp3 + deg (b) dt2g

Figure 22: 2 representative MLWFs from the wannierisation of 9 spin-up bands of iron. a) A
representative of the hybrid (sp3 and deg) group of MLWFs. b) A representative of the dt2g group of
MLWFs.



26 wannier90 v3.1.0: Solution booklet

Density of states

• run postw90 and plot the DOS with gnuplot
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Figure 23: Interpolated DOS of bcc iron on a 25 × 25 × 25 k-mesh. Up-spin channel (solid red).
Down-spin channel (solid blue).

• Check the convergence by repeating the DOS calculations with more k-points.

Plots of the DOS calculated with different k-point mesh densities for the spin-down channel are
shown in Fig. 24-(a). In Fig. 24-(b)-(c) and (d) we show the convergence of the DOS for the
spin-down channel, spin-up channel and both spin channels respectively. The convergence is
assessed by looking at the number of states N computed by integrating the DOS up to the Fermi
level using the formula

N↑/↓ =

∫ εF

−∞
dε fMV(ε, ↑ / ↓) g(ε, ↑ / ↓), (1)

where fMV(ε, ↑) =
∫ ε
−∞ dε′ δ̃(ε′) is the Marzari-Vanderbilt occupation number function, with

δ̃(x) =
2√
π
e−[x−(1/

√
2)]2(2 −

√
2x), x =

µ− ε
σ

,

where εF is the Fermi energy (12.6256 eV) and σ is the smearing (0.02 eV). g(ε, ↑) is the DOS
from wannier90 interpolation.
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Figure 24: Panel (a) interpolated DOS for the up-spin channel of bcc iron for different k-mesh sizes.
Panel (b) corresponding integrated DOS. The integral of the DOS is used as a convergence criterion.
N↑+↓ has been scaled such as the final value is equal to the total number of electrons.
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Projected versus maximally-localized Wannier functions

• Open one of the .wout files and search for “Initial state”; those are the projected WFs.

For the spin-up channel one finds

Initial State
WF centre and spread 1 ( -0.000000, -0.000000, -0.000000 ) 2.25930561
WF centre and spread 2 ( -0.000000, 0.000000, -0.000000 ) 2.32454089
WF centre and spread 3 ( 0.000000, 0.000000, -0.000000 ) 2.32428592
WF centre and spread 4 ( 0.000000, -0.000000, -0.000000 ) 2.32428592
WF centre and spread 5 ( -0.000000, 0.000000, -0.000000 ) 0.54443303
WF centre and spread 6 ( 0.000000, -0.000000, -0.000000 ) 0.51353680
WF centre and spread 7 ( 0.000000, 0.000000, -0.000000 ) 0.51353680
WF centre and spread 8 ( 0.000000, 0.000000, -0.000000 ) 0.54447716
WF centre and spread 9 ( 0.000000, 0.000000, 0.000000 ) 0.51347734
Sum of centres and spreads ( 0.000000, -0.000000, -0.000000 ) 11.86187946

It is clear from the spreads and the centres that these are the projected WFs. In particular, WF 1
is the s-projected WF. WF 2-4 are the p-projected WFs and WF 5-9 are the d-projected WF,
with eg (5,8) and t2g (6,7,9) charachter, respectively (see Fig. 25).

(a) s-type (b) p-type (c) d-type

Figure 25: 3 representative MLWFs from the wannierisation via projections of 9 spin-up bands of
iron. a) MLWF from projection onto 1 s orbital. b) A representative of the MLWFs from projection
onto p orbitals. c) A representative of the MLWFs from projection onto d orbitals.

• The Wannier spreads have re-organized in two groups, 6+3; moreover, the six more diffuse WFs
are off-centred: the initial atomic-like orbitals hybridized with one another, becoming more
localized in the process.
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Final State
WF centre and spread 1 ( -0.709852, 0.000191, 0.000015 ) 1.08935227
WF centre and spread 2 ( -0.000015, -0.000041, -0.709852 ) 1.08935223
WF centre and spread 3 ( 0.709852, -0.000191, -0.000015 ) 1.08935227
WF centre and spread 4 ( -0.000191, -0.709852, 0.000041 ) 1.08935226
WF centre and spread 5 ( 0.000015, 0.000041, 0.709852 ) 1.08935227
WF centre and spread 6 ( -0.000000, -0.000000, 0.000000 ) 0.43234437
WF centre and spread 7 ( 0.000000, 0.000000, 0.000000 ) 0.43234440
WF centre and spread 8 ( 0.000191, 0.709852, -0.000041 ) 1.08935228
WF centre and spread 9 ( -0.000000, 0.000000, 0.000000 ) 0.43234438
Sum of centres and spreads ( -0.000000, -0.000000, -0.000000 ) 7.83314672

• The first plateau corresponds to atom-centred WFs of separate s, p, and d character, and the
sharp drop signals the onset of the hybridization. With hindsight, we can redo steps 4 and 5 more
efficiently using trial orbitals with the same character as the final MLWFs,

Fe : sp3d2;dxy;dxz;dyz

With this choice the minimization converges much more rapidly as can be seen in Fig. 26-(a).

• Let us recompute the DOS using, instead of MLWFs, the WFs obtained by projecting onto s, p,
and d-type trial orbitals.
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Figure 26: a) Convergence of Ω for two different sets of initial projections: s; p; d (solid black) and
sp3d2; dxy; dxz; dyz (solid red). b) DOS with MLWFs (solid black) and projected s; p; dWannier functions
(solid blue).
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Orbital–projected DOS and exchange splitting

In order to obtain the partial DOS projected onto the p–type WFs, add to the .win files

dos_project = 2,3,4

and re-run postw90.

• Plot the projected DOS for both up– and down–spin bands. Repeat for the s and d projections.

Results are shown in figure below (Fig. 27).
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Figure 27: Partial DOS projected onto a) 1 s-like WF, b) 3p-like WFs and c) 5d-like WFs.

• The difference between corresponding values of the on-site energies the on-site energies 〈0n|H|0n〉
in iron_up.wout and in iron_dn.wout gives the exchange splittings for the individual orbitals.

Results are shown in Tab. 6.

Table 6: Exchange splittings for individual orbitals
in eV.

n character 〈0n|H|0n〉 for ↓ 〈0n|H|0n〉 for ↑ ∆
[eV] [eV] [eV]

1 s 21.307132 22.074648 0.767516
2 p 26.353088 26.817526 0.464438
3 p 26.352956 26.817207 0.464251
4 p 26.352956 26.817207 0.464251
5 d 10.531720 13.206631 2.67491
6 d 10.775917 12.808277 2.03236
7 d 10.775917 12.808277 2.03236
8 d 10.532108 13.207139 2.67503
9 d 10.775177 12.807388 2.03221

• Compare their magnitudes with the splittings displayed by the orbital-projected DOS plots
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9: Cubic BaTiO3

• Outline : Obtain MLWFs for a perovskite.

Figure 28: Unit cell of cubic BaTiO3 crystal plotted with the XCrySDen program.

1-5 Compute the MLWFs.

Converged values for the total spread functional and its components are shown in Tab. 7.

• Plot the second MLWF.

The result is shown in Fig. 29-(a) and -(b).

(a) top (b) side

Figure 29: Top-view (a) and side-view (b) of the second MLWF in BaTiO3

• We can now simulate the ferroelectric phase by displacing the Ti atom. Regenerate the MLWFs
(i.e., compute the ground-state charge density and Bloch states using pwscf, etc.) and look at the
change in the second MLWF.

The result is shown in Fig. 30-(a) and -(b).

Table 7: Converged values of the components of
spread functional and their sums for cubic BaTiO3

in Å2.

Ω ΩI ΩOD ΩD Niter

12.7187 12.5662 0.1525 0.000 50
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(a) top (b) side

Figure 30: Top-view (a) and side-view (b) of the second MLWF in BaTiO3 with the Ti atom displaced.

(a) Exclude bands = 2-20.
Ti:s

(b) Exclude bands = 1,5-20.
Ti:p

(c) Exclude bands = 1-4,6-20.
Ba:s

(d) Exclude bands = 1-5,9-20.
O:s

(e) Exclude bands = 1-8,12-20.
Ba:p

(f) Exclude bands = 1-11.
O:p

Figure 31: MLWFs for other group of bands.

Further ideas

• Look at MLWFs for other groups of bands.

Plots of MLWFs for other group of bands are shown in Fig. 31-(a)-(b)-(c)-(d)-(e) and -(f).

• What happens if you form MLWFs for the whole valence manifold?

Some representative MLWFs from the wannierisation of the whole valence bands are shown in
Fig. 32.
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(a) Ti 3s (b) Ti 3p (c) Ba 5s

(d) O 2s (e) Ba 5p (f) O 2p

Figure 32: MLWFs formed from the whole valence manifold, i.e. from 20 bands.
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10: Graphite

• Outline: Obtain MLWFs for the graphite (AB, Bernal).

Figure 33: Unit cell of Graphite plotted with the XCrySDen program.

1-5 Compute the MLWFs.

Converged values for the total spread functional and its components are shown in Tab. 8. Three
MLWFs, one σ and two pz on different layers are shown in Fig. 34(a),(b) and (c) respectively.

(a) σ top layer (b) pz top layer (c) pz bottom layer

Figure 34: MLWFs for graphite. (a) σ–like MLWF centred on a C–C bond. (b) pz–like MLWF on the
top layer. (c) pz–like MLWF on the bottom layer.

Table 8: Converged values of the components of
spread functional and their sums for graphite (AB,
Bernal) in Å2.

Ω ΩI ΩOD ΩD Niter

7.3809 5.7641 1.5874 0.0293 100
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11: Silicon — valence and low lying conduction states

Figure 35: Unit cell of Silicon crystal plotted with the XCrySDen program.

Valence States

• Outline: Obtain MLWFs for the valence bands of silicon.

1-5 Inspect the output file silicon.wout. The total spread converges to its minimum value after just
a few iterations. Note that the geometric centre of each MLWF lies at the centre of the Si–Si
bond. Note also that the memory requirement for the minimisation of the spread is very low as
the MLWFs are defined by just the 4× 4 unitary matrices U(k).

Below a snippet from the silicon.wout output file

Final State
WF centre and spread 1 ( -0.674701, 0.674701, -0.674701 ) 1.59185520
WF centre and spread 2 ( -0.674701, -0.674701, 0.674701 ) 1.59185520
WF centre and spread 3 ( 0.674701, 0.674701, 0.674701 ) 1.59185520
WF centre and spread 4 ( 0.674701, -0.674701, -0.674701 ) 1.59185520
Sum of centres and spreads ( -0.000000, 0.000000, 0.000000 ) 6.36742081

Spreads (Ang^2) Omega I = 5.801375426
================ Omega D = 0.000000000

Omega OD = 0.566045385
Final Spread (Ang^2) Omega Total = 6.367420811

------------------------------------------------------------------------------

Memory estimates may be found in the MEMORY ESTIMATE section of the silicon.wout file.

*============================================================================*
| MEMORY ESTIMATE |
| Maximum RAM allocated during each phase of the calculation |
*============================================================================*
| Disentanglement 1.57 Mb |
| Wannierise: 0.47 Mb |

Converged values for the total spread functional and its components are shown in Tab. 9.

• Plot the MLWFs The four MLWFs with σ character describing the valence manifold of Si are
shown in Fig. 36(a),(b) and (c) respectively.
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Table 9: Converged values of the compo-
nents of spread functional and their sum,
given in Å2.

MP mesh Ω ΩI ΩOD ΩD

4× 4× 4 6.3674 5.8014 0.5660 0.0000

(a) 1 (b) 2 (c) 3 (d) 4

Figure 36: Four MLWFs for the valence manifold of Si.

Valence + Conduction States

• Outline: Obtain MLWFs for the valence and low–lying conduction-band states of Si. Plot the
interpolated bandstructure. Apply a scissors correction to the conduction bands.

• Inspect the output file silicon.wout. The minimisation of the spread occurs in a two-step proce-
dure. First, we minimise ΩI – this is the extraction of the optimal subspace in the disentanglement
procedure. Then, we minimise ΩD + ΩOD.

Converged values for the total spread functional and its components are shown in Tab. 10. The
two groups of four MLWFs with sp3 character are shown in Fig. 37

Extraction of optimally-connected subspace
------------------------------------------

+---------------------------------------------------------------------+<-- DIS
| Iter Omega_I(i-1) Omega_I(i) Delta (frac.) Time |<-- DIS
+---------------------------------------------------------------------+<-- DIS

1 12.97640155 12.44630235 4.259E-02 0.00 <-- DIS
. . . . .

79 12.33580893 12.33580893 -6.531E-11 0.23 <-- DIS
80 12.33580893 12.33580893 -5.241E-11 0.23 <-- DIS

<<< Delta < 1.000E-10 over 3 iterations >>>
<<< Disentanglement convergence criteria satisfied >>>

Final Omega_I 12.33580893 (Ang^2)

+----------------------------------------------------------------------------+
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Table 10: Converged values of the com-
ponents of spread functional and their
sum, given in Å2.

MP mesh Ω ΩI ΩOD ΩD

4× 4× 4 17.54841 12.3358 5.03501 0.17759

Final State
WF centre and spread 1 ( 1.807167, 1.807167, 1.807167 ) 2.01695824
WF centre and spread 2 ( 1.807167, 0.891636, 0.891636 ) 2.01695823
WF centre and spread 3 ( 0.891636, 1.807167, 0.891636 ) 2.01695823
WF centre and spread 4 ( 0.891636, 0.891636, 1.807167 ) 2.01695824
WF centre and spread 5 ( 0.226733, 0.226733, 0.226733 ) 2.37014516
WF centre and spread 6 ( 0.226733, -0.226733, -0.226733 ) 2.37014508
WF centre and spread 7 ( -0.226733, 0.226733, -0.226733 ) 2.37014515
WF centre and spread 8 ( -0.226733, -0.226733, 0.226733 ) 2.37014514
Sum of centres and spreads ( 5.397608, 5.397608, 5.397608 ) 17.54841346

Spreads (Ang^2) Omega I = 12.335808933
================ Omega D = 0.177593840

Omega OD = 5.035010692
Final Spread (Ang^2) Omega Total = 17.548413465

------------------------------------------------------------------------------

(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8

Figure 37: Eight MLWFs with sp3 character, four on each Si atom in the unit cell.

• Plot the bandstructure.

The interpolated bandstructure is given in Fig. 38.
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Figure 38: Bandstructure of silicon from DFT calculation (solid black) and from Wannier interpolation
(solid red).

Further ideas

• Compare the Wannier-interpolated bandstructure with the full pwscf bandstructure with a finer
k-point grid.

Result for a 8× 8× 8 mesh is shown in Fig. 39.
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Figure 39: Bandstructure of silicon from DFT calculation (solid black) and from Wannier interpolation
with a 4× 4× 4 mesh (solid red) and 8× 8× 8 mesh (solid blue).
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• Compute four MLWFs spanning the low-lying conduction states.

The MLWFs spanning the 4 low-lying conduction states are shown in Fig. 40. The initial
projections were 4 sp3 on the Si atom at (0,0,0).

(a) 1 (b) 2 (c) 3 (d) 4

Figure 40
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12: Benzene — valence and low lying conduction states

Figure 41: Benzene molecule in periodic cell plotted with the XCrySDen program.

Valence States

• Outline: Obtain MLWFs for the valence bands of benzene.

1-4 Inspect the output file benzene.wout. The total spread converges to its minimum value after just a
few iterations.

Convergence of total spread Ω is shown in Fig. 43. The spread converges very quickly, and
after only 15 iterations the |∆Ω| is already below 10−8. Below is shown the final state of the
minimization, after 22 iterations:

Final State
WF centre and spread 1 ( -6.875141, 7.935472, 7.937658 ) 0.65233309
WF centre and spread 2 ( 4.748245, 7.935472, 7.937658 ) 0.65234300
WF centre and spread 3 ( 5.809324, 6.097678, 7.937658 ) 0.65186298
WF centre and spread 4 ( 7.816785, -7.396927, 7.648002 ) 1.20135958
WF centre and spread 5 ( 7.816785, -7.396927, -7.648002 ) 1.20135948
WF centre and spread 6 ( 7.936083, 7.324218, -7.937658 ) 0.60992987
WF centre and spread 7 ( 7.935073, -6.095184, 7.937658 ) 0.65161009
WF centre and spread 8 ( 6.874208, -6.712573, 7.937658 ) 0.61134798
WF centre and spread 9 ( 6.874224, 6.850489, -7.648754 ) 1.20500764
WF centre and spread 10 ( -7.936214, 6.097679, 7.937658 ) 0.65186256
WF centre and spread 11 ( 5.813353, -6.095183, 7.937658 ) 0.65160955
WF centre and spread 12 ( 6.874224, 6.850489, 7.648754 ) 1.20500766
WF centre and spread 13 ( 5.812342, 7.324217, 7.937658 ) 0.60993084
WF centre and spread 14 ( 5.931632, -7.396946, 7.648001 ) 1.20136423
WF centre and spread 15 ( 5.931632, -7.396946, -7.648001 ) 1.20136424
Sum of centres and spreads ( 71.362557, 7.925029, 55.563607 ) 12.95829277

Spreads (Ang^2) Omega I = 10.455434168
================ Omega D = 0.000000000

Omega OD = 2.502858604
Final Spread (Ang^2) Omega Total = 12.958292772

------------------------------------------------------------------------------

5 Plot the MLWFs 2-4

MLWFs are shown in Fig. 42.
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(a) Valence MLWF 2 (b) Valence MLWF 3 (c) Valence MLWF 4

Figure 42: MLWFs 2, 3 and 4, with Vesta from cube format.
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Figure 43: Convergence of total spread Ω. The red curve refers to the left y-axis, i.e. the actual
value of the total spread at each iteration. The blue curve refers to the right y-axis, i.e. the absolute
difference between between the spread functional at iteration i and i− 1, i.e. ∆Ω.

Valence + Conduction States

• Outline: Obtain MLWFs for the valence and low-lying conduction states of benzene.

1 First, we minimise ΩI . Then, we minimise ΩD + ΩOD.

Extract from the .wout output file for the disentanglement procedure with initial and final value
of ΩI

Below a snippet from the .wout output file, showing the finale state of the minimisation of ΩD

and ΩOD.

2 Plot the MLWFs 1, 7 and 13.

MLWFs are shown in Fig. 44.
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Extraction of optimally-connected subspace
------------------------------------------

+---------------------------------------------------------------------+<-- DIS
| Iter Omega_I(i-1) Omega_I(i) Delta (frac.) Time |<-- DIS
+---------------------------------------------------------------------+<-- DIS

1 14.77292507 14.36793746 2.819E-02 0.06 <-- DIS
. . . . .
. . . . .
76 14.26979011 14.26979011 7.234E-11 0.34 <-- DIS

<<< Delta < 1.000E-10 over 3 iterations >>>
<<< Disentanglement convergence criteria satisfied >>>

Final Omega_I 14.26979011 (Ang^2)

+----------------------------------------------------------------------------+

(a) Valence MLWF 1 (b) Valence MLWF 7 (c) Conduction MLWF 13

Figure 44: MLWFs 1, 3 and 13 with Vesta from cube format.
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Final State
WF centre and spread 1 ( -6.872991, -7.937658, 7.937657 ) 0.64685210
WF centre and spread 2 ( -7.937084, -6.094542, -7.937656 ) 0.64620663
WF centre and spread 3 ( 5.810194, -6.094542, 7.937654 ) 0.64620672
WF centre and spread 4 ( 4.746097, -7.937658, 7.937657 ) 0.64685949
WF centre and spread 5 ( 5.810193, 6.094541, -7.937657 ) 0.64620720
WF centre and spread 6 ( -7.937083, 6.094541, 7.937655 ) 0.64620743
WF centre and spread 7 ( 6.874209, 6.725491, 7.937658 ) 0.58709128
WF centre and spread 8 ( 6.874209, -6.725491, 7.937657 ) 0.58709059
WF centre and spread 9 ( 5.824168, -7.331141, 7.937657 ) 0.58581741
WF centre and spread 10 ( 5.824168, 7.331141, -7.937658 ) 0.58581778
WF centre and spread 11 ( 7.924257, 7.331142, 7.937657 ) 0.58581692
WF centre and spread 12 ( 7.924257, -7.331141, -7.937658 ) 0.58581674
WF centre and spread 13 ( -7.514755, 7.937658, -7.937656 ) 1.57077288
WF centre and spread 14 ( 7.622957, -6.642249, 7.937655 ) 1.58413409
WF centre and spread 15 ( 6.125499, -6.642276, -7.937651 ) 1.58406298
WF centre and spread 16 ( 5.387848, -7.937658, -7.937656 ) 1.57079972
WF centre and spread 17 ( 6.125498, 6.642275, 7.937656 ) 1.58407213
WF centre and spread 18 ( 7.622957, 6.642249, -7.937653 ) 1.58414266
Sum of centres and spreads ( 60.234596,-15.875317, 15.875317 ) 16.87397474

Spreads (Ang^2) Omega I = 14.269790106
================ Omega D = 0.000000000

Omega OD = 2.604184635
Final Spread (Ang^2) Omega Total = 16.873974742

------------------------------------------------------------------------------
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13: (5,5) Carbon Nanotube — Transport properites

• Outline: Obtain the bandstructure, quantum conductance and density of states of a metallic (5,5)
carbon nanotube.

(a) side view (b) prospectic top view

Figure 45: 5 unit cells for the carbon nanotube system from a) side view and b) prospective top view
plotted with the XCrySDen program.

1 Run pwscf and wannier90. Inspect the output file cnt55.wout. The minimisation of the spread
occurs in a two-step proce- dure. First, we minimise ΩI . Then, we minimise ΩD + ΩOD.

Below, an extract from the .wout file showing a summary of the disentanglement procedure
(minimisation of ΩI)

Extraction of optimally-connected subspace
------------------------------------------

+---------------------------------------------------------------------+<-- DIS
| Iter Omega_I(i-1) Omega_I(i) Delta (frac.) Time |<-- DIS
+---------------------------------------------------------------------+<-- DIS

1 33.96797815 33.91073784 1.688E-03 0.00 <-- DIS
2 33.92937273 33.90274574 7.854E-04 0.02 <-- DIS
. . . . .
. . . . .

45 33.89889125 33.89889125 4.172E-11 0.50 <-- DIS
46 33.89889125 33.89889125 1.626E-11 0.51 <-- DIS

<<< Delta < 1.000E-10 over 3 iterations >>>
<<< Disentanglement convergence criteria satisfied >>>

Final Omega_I 33.89889125 (Ang^2)

+----------------------------------------------------------------------------+
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Below, an extract from the .wout file showing the final state for the minimisation of ΩD + ΩODs

Final State
WF centre and spread 1 ( -6.875141, 7.935472, 7.937658 ) 0.65233309
WF centre and spread 2 ( 4.748245, 7.935472, 7.937658 ) 0.65234300
WF centre and spread 3 ( 5.809324, 6.097678, 7.937658 ) 0.65186298
WF centre and spread 4 ( 7.816785, -7.396927, 7.648002 ) 1.20135958
WF centre and spread 5 ( 7.816785, -7.396927, -7.648002 ) 1.20135948
WF centre and spread 6 ( 7.936083, 7.324218, -7.937658 ) 0.60992987
WF centre and spread 7 ( 7.935073, -6.095184, 7.937658 ) 0.65161009
WF centre and spread 8 ( 6.874208, -6.712573, 7.937658 ) 0.61134798
WF centre and spread 9 ( 6.874224, 6.850489, -7.648754 ) 1.20500764
WF centre and spread 10 ( -7.936214, 6.097679, 7.937658 ) 0.65186256
WF centre and spread 11 ( 5.813353, -6.095183, 7.937658 ) 0.65160955
WF centre and spread 12 ( 6.874224, 6.850489, 7.648754 ) 1.20500766
WF centre and spread 13 ( 5.812342, 7.324217, 7.937658 ) 0.60993084
WF centre and spread 14 ( 5.931632, -7.396946, 7.648001 ) 1.20136423
WF centre and spread 15 ( 5.931632, -7.396946, -7.648001 ) 1.20136424
Sum of centres and spreads ( 71.362557, 7.925029, 55.563607 ) 12.95829277

Spreads (Ang^2) Omega I = 10.455434168
================ Omega D = 0.000000000

Omega OD = 2.502858604
Final Spread (Ang^2) Omega Total = 12.958292772

------------------------------------------------------------------------------

2. Note that the initial pz projections on the carbon atoms are oriented in the radial direction with
respect to the nanotube axis.

Begin Projections

Ang

c= 3.3780, -0.7128, -0.6157 :pz :z= 3.3780, -0.7128, 0.0000 :x=0,0,1

3. The interpolated bandstructure is written to cnt55_band.agr

To plot the interpolated bands, the quantum conductance and the Density of States as shown in
Fig. 6 in the Wannier90 tutorial, one can use the xmgrace program.
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XMGRACE TUTORIAL

Run the xmgrace plotting program from command line as

$ > xmgrace

Before importing the data to be plotted, we have to reorganize the layout by selecting

Edit 7→ Arrange graphs...

here we can generate a grid of graphs by selecting the number of columns and rows from the
drop menus. For this particular example, we want to increase the number of columns to 3, i.e.
Cols: 3 and leave the number of rows to 1 in the Matrix section. Moreover, we don’t want
any gap between the graphs so we also need to modify the value of Hgap/width in the bottom
Spacing section, i.e Hgap/width 0. Once we have generated the three graphs we need to import
the data. This can be achieved by

Data 7→ Import 7→ ASCII...

The three files to import are cnt_band.agr, cnt_qc.dat and cnt_dos.dat, respectively. For
each file we need to select the graph in the Read to graph: section, i.e. G(0), G(1) and G(2),
respectively.
In order to flip the x-axis with the y-axis, one need to perform the following

Data 7→ Transformations 7→ Evaluate expressions...

In the Formula: section write

s1.x=s0.y; s1.y=s0.x

and then click apply.
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Figure 46: Reproduction of Fig. 6 in the wannier90 tutorial.
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14: Linear Sodium Chain — Transport properties

• Outline: Compare the quantum conductance of a periodic linear chain of Sodium atoms with that
of a defected chain

(a) periodic

(b) defected

Figure 47: Unit cell of a periodic linear Sodium chain (left panel) and of a defected linear Sodium
chain (right panel) plotted with the XCrySDen program. The former consists of 2 Na atom per unit
cell (6 unit cells have been drawn for comparison with the defected system). The latter consists of 13
Na atoms per unit cell.

1-2 Run pwscf and wannier90 for the periodic and defected systems.

3 Compare the quantum conductance of the periodic (bulk) calculation with the defected (LCR)
calculation.

The quantum conductance and the DOS are shown in Fig. 48.
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Figure 48: DOS (left) and quantum conductance (right) of periodic (solid black) and defected (solid
red) Sodium linear chain.
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15: (5,0) Carbon Nanotube — Transport properties
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16: Silicon — Boltzmann transport

• Outline: Obtain MLWFs for the valence and low-lying conduction states of Si. Calculate the
electrical conductivity, the Seebeck coefficient and the thermal conductivity in the constant relaxation
time approximation using the BoltzWann module.

Figure 49: Unit cell of Silicon crystal plotted with the XCrySDen program.

1-5 For this example we are only going to show the solutions from point 6 onwards, as the first 5
steps are the usual steps to obtain MLWFs.

6 Run postw90 to calculate the transport coefficients.

• Inspect the output file Si.wpout. Check if no warnings are issued. Note that if no special flags
are passed to BoltzWann, it assumes that the ab initio calculation did not include magnetization
effects, and thus it sets to 2 the number of electrons per state.

Below the section in the Si.wpout relative to the Boltzmann transport, where it reports the
number of electrons per state and the relaxation time in fs.

*---------------------------------------------------------------------------*
| Boltzmann Transport (BoltzWann module) |
*---------------------------------------------------------------------------*
| Please cite the following paper when publishing results obtained using |
| the BoltzWann module: |
| G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, |
| Comp. Phys. Comm. 185, 422 (2014); DOI:10.1016/j.cpc.2013.09.015 |
*---------------------------------------------------------------------------*

Calculating Transport Distribution function (TDF) and DOS...
k-grid used for band interpolation in BoltzWann: 40x40x40
Number of electrons per state: 2
Relaxation time (fs): 10.00000000

TDF and DOS calculated.

Transport properties calculated.

*---------------------------------------------------------------------------*
| End of the BoltzWann module |
*---------------------------------------------------------------------------*
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Using your favourite plotting program, plot the Si_boltzdos.dat file to inspect the DOS.

Plot shown in Fig. 50-(a).

Using your favourite plotting program, plot columns 1 and 3 of the Si_seebeck.dat file to inspect the
Sxx component of the Seebeck coefficient as a function of the chemical potential µ, at T = 300 K.

Plot shown in Fig. 50-(b).
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Figure 50: Panel (a) DOS of Silicon computed with BoltzWann. Panel (b) Sxx component of the
Seebeck tensor as function of the chemical potential µ computed with BoltzWann at T = 300 K.

Further ideas

• Change the interpolation to a 60× 60× 60 mesh and run again postw90 to check if the results for
the transport properties are converged.

Plot of the two DOS with 40× 40× 40 (red line) and 60× 60× 60 (blue line) are shown in Fig. 51.
We can see that all the peaks for the valence and conduction states in the 60× 60× 60 DOS are
also reproduced in the 40× 40× 40 DOS (even though there is some noise, which however does
not affect the qualitative description.)

• Change the Si.win input file so that it calculates the transport coefficients for temperatures from
300 to 700 K, with steps of 200 K. Rerun postw90 and verify that the increase in execution time
is negligible (in fact, most of the time is spent to interpolate the band structure on the k mesh).
Plot the Seebeck coefficient for the three temperatures T = 300 K, T = 500 K and T = 700 K. To
do this, you have to filter the Si_seebeck.dat to select only those lines where the second column
is equal to the required temperature. A possible script to select the Sxx component of the Seebeck
coefficient for T = 500 K using the awk/gawk command line program is the following:

awk ’if ($2 == 500) print $1, $3;’ < Si_seebeck.dat > Si_seebeck_xx_500K.dat

Below is shown the total wall-time for the two calculations done with the original set up, i.e.
Tmin = Tmax = 300 K and Tmin = 300 K, Tmax = 700 K, ∆T = 200 K.

Total Execution Time 16.356 (sec)
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Figure 51: Convergence of DOS

Total Execution Time 16.108 (sec)

The plot of Sxx(µ) for different values of T is shown in Fig. 52
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Figure 52: Sxx component of the Seebeck tensor as function of the chemical potential µ for different
values of the temperature: T = 300 K (solid purple), T = 500 K (solid green) and T = 700 K (solid
blue).

• Try to calculate the Seebeck coefficient as a function of the temperature, for a n–doped sample
with, e.g., n = 1018 cm−3. Note that to this aim, you need to calculate consistently the value µ(T )
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Table 11: Values of the chemical potential µ in eV
as a function of T in K, computed by numerically
solving Eq. 2.

T [K] µ [eV]

300 6.839
400 6.798
500 6.752
600 6.707
700 6.677

of the chemical potential as a function of the temperature, so as to reproduce the given value of n.
Then, you have to write a small program/script to interpolate the output of BoltzWann, that
you should have run on a suitable grid of (µ, T ) points.

ASSUMPTIONS: 1) The addition of a n−type dopant does not modify the electronic structure,
it only moves the Fermi level up; 2) The density of states is temperature-independent. µ(T ) is a
decreasing monotonic function of T .

To obtain a µ(T ) in a consistent way we use the above assumptions and the following equation:

Nc +Nv =

∫ +∞

−∞
dε g(ε, T = 0) f(ε, µ(T )), (2)

where Nv = 8, number of valence electrons per unit cell when no dopants are considered,
Nc = nVcell is the number of carriers per unit cell (Vcell is the volume of the unit cell in cm−3).
g(ε, T = 0) is the density of states at T = 0K and by assumption it does not change with T .
Finally, f(ε, µ(T )) is the Fermi-Dirac distribution as a function of ε and T

f(ε, µ(T )) =
1

1 + exp[ ε−µ(T )κBT
]

(3)

For each T we find the value of the µ(T ) such as the integral is (approximately) Nc +Nv. 2 The
values of µ for T in the range [300 K–700 K] are shown in Tab. 11

In practice we do not perform an interpolation but we run a single calculation with ∆µ = 0.001
eV since these are not expensive and then we filter out the result from Si_seebeck.dat with the
following simple script

mulist=‘cat mu.dat | awk ’printf "i4" $1’‘; i=0; for mu in $mulist; do i=‘echo
$i+1|bc‘ ; cat Si_seebeck.dat | awk -v "mu=$mu" ’if($1==mu) print $1,$2,$3,$7,$11’
| awk -v "Tcol=$i" ’if(NR==Tcol) print $1, $2, $3, $4, $5’ » Si_seebeck_vs_T.dat;done

where mu.dat is a data file containing the second column of Tab. 11. Fig. 53 shows the plots of
the diagonal coefficients of the Seebeck tensor with respect to T generated by the above script
and stored in Si_seebeck_vs_T.dat.

2This can be easily achieved with any code, e.g. Python, MATLAB or even bash.
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17: Iron — Spin-orbit-coupled bands and Fermi-surface contours

• Outline: Plot the spin-orbit-coupled bands of ferromagnetic bcc Fe. Plot the Fermi-surface contours
on a plane in the Brillouin zone.

Figure 54: Unit cell of Iron crystal plotted with the XCrySDen program.

1-6 Compute the MLWFs and compute the energy eigenvalues and spin expectation values.

The final state for all the 18 MLWFs is

Final State
WF centre and spread 1 ( -0.709848, 0.000000, 0.000000 ) 1.08973288
WF centre and spread 2 ( -0.685480, -0.000000, 0.000000 ) 1.10285536
WF centre and spread 3 ( 0.709848, -0.000000, 0.000000 ) 1.08973288
WF centre and spread 4 ( 0.685480, -0.000000, 0.000000 ) 1.10285536
WF centre and spread 5 ( -0.000000, -0.709848, 0.000000 ) 1.08973287
WF centre and spread 6 ( 0.000000, -0.685480, 0.000000 ) 1.10285536
WF centre and spread 7 ( 0.000000, 0.709848, 0.000000 ) 1.08973288
WF centre and spread 8 ( 0.000000, 0.685480, 0.000000 ) 1.10285536
WF centre and spread 9 ( 0.000000, -0.000000, -0.709835 ) 1.08977307
WF centre and spread 10 ( 0.000000, -0.000000, -0.685503 ) 1.10302800
WF centre and spread 11 ( -0.000000, -0.000000, 0.709835 ) 1.08977304
WF centre and spread 12 ( 0.000000, -0.000000, 0.685503 ) 1.10302800
WF centre and spread 13 ( -0.000000, -0.000000, -0.000000 ) 0.43232470
WF centre and spread 14 ( -0.000000, -0.000000, -0.000000 ) 0.41118748
WF centre and spread 15 ( 0.000000, 0.000000, -0.000000 ) 0.43232470
WF centre and spread 16 ( 0.000000, 0.000000, -0.000000 ) 0.41118748
WF centre and spread 17 ( -0.000000, 0.000000, 0.000000 ) 0.43232866
WF centre and spread 18 ( -0.000000, 0.000000, 0.000000 ) 0.41119649
Sum of centres and spreads ( 0.000000, 0.000000, 0.000000 ) 15.68650457

Spreads (Ang^2) Omega I = 11.898334117
================ Omega D = 0.031570932

Omega OD = 3.756599523
Final Spread (Ang^2) Omega Total = 15.686504572

------------------------------------------------------------------------------

To plot the bands using python

$> python Fe-bands.py
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The interpolated band structure of Fe with spin-orbit interaction using the module kpath is shown
in Fig. 55. The color scheme is used to show the expectation value of the spin operator Ŝz in
units of ~/2.
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Figure 55: wannier90 interpolated bands of Fe computed from a DFT calculation with spin-orbit
interaction. Colour-scheme shows the expectation value 〈Ŝz〉 in units of ~/2.

Next we plot the Fermi-surface contours on the (010) plane ky = 0, using the kslice module.

Further ideas

– Redraw the Fermi surface contours on the (010) plane starting from a calculation without
spin-orbit coupling (SOC), by adding to the input files iron_{up,down}.win in Example 8.
The Fermi surface contours on the (010) plane without SOC are shown in Fig. 57-(a).

– For a spinor calculation we can still spin-decompose the DOS.
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(a) spin-orbit kslice (b) no spin-orbit

Figure 56
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Figure 57: Spin-decomposed DOS (panel a) with spin-up (red) and spin-down (blue) components.
Projected DOS on odd-indexed MLWFs (red) and even-indexed (blue).
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18: Iron—Berry curvature, anomalous Hall conductivity and optical
conductivity

• Outline: Calculate the Berry curvature, anomalous Hall conductivity, and (magneto)optical
conductivity of ferromagnetic bcc Fe with spin-orbit coupling. In preparation for this example it
may be useful to read Ref. 3 and Ch. 11 of the User Guide.

1-6 Compute the MLWFs and compute the energy eigenvalues and spin expectation values.

These are the same six steps of Ex. 17 and therefore the results are not going to be showed here
again.

Berry curvature plots

• The Berry curvature Ωαβ(k) of the occupied states is defined in Eq. (11.18) of the User Guide.
Plot the Berry curvature component Ωz(k) = Ωxy(k) along the magnetization direction.

The Fermi energy should be 12.6283 eV. With this value we obtain the energy bands and the
Berry curvature component Ωz(k) = Ωxy(k) along high-symmetry points shown in Fig. 58 and
Fig. 59. Eq. (11.18) of the User Guide is reported below for completeness.

Ωαβ(k) =
occ∑
n

fnkΩn,αβ, (4)

with
Ωn,αβ = εαβγΩn,γ = −2 Im 〈∇kαunk|∇kβunk〉 , (5)

where the Greek letters indicate Cartesian coordinates, εαβγ is the Levi-Civita antisymmetric
tensor, and |unk〉s are the cell-periodic Bloch functions.
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Figure 58: Band structure of Fe along symmetry lines Γ-H-P-N-Γ-H-N-Γ-P-N.
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Figure 59: Berry curvature Ωz(k) in Fe along symmetry lines.

• Combine the plot of the Fermi lines on the ky plane with a heat-map plot of (minus) the Berry
curvature

The plot of the Fermi lines with a colour-map of −Ωz(kx, 0, kz) is shown in Fig. 59.

Anomalous Hall conductivity

• AHC converges rather slowly with k-point sampling, and a 25 × 25 × 25 does not yield a well-
converged value. Compare the converged AHC value with those obtained in Refs. 4 and 3.

Figure 60: (Colour online) Calculated total Berry curvature −Ωz(k) in the plane ky = 0 (note log
scale). Intersections of the Fermi surface with this plane are shown.
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The x,y,z-components of the AHC for a 25× 25× 25 BZ mesh are shown in the snippet below.
The converged result reported in Refs. 4 and 3 for the z -component is 756.76 ((Ωcm)−1). Hence,
a 25× 25× 25 BZ mesh clearly gives a very inaccurate value (∼ 36.4% error). Even with adaptive
refinement the error is still very large (∼ 31.7%). It is worth to note that the adaptive refinement
slightly breaks the symmetry and gives non-zero values for the x -component and y-component,
although these are opposite in sign.

Without adaptive refinement

Properties calculated in module b e r r y
------------------------------------------

* Anomalous Hall conductivity

Interpolation grid: 25 25 25

Fermi energy (ev): 12.6283

AHC (S/cm) x y z
========== -0.0000 0.0000 554.6437

Total Execution Time 59.112 (sec)

With adaptive refinement

Properties calculated in module b e r r y
------------------------------------------

* Anomalous Hall conductivity

Regular interpolation grid: 25 25 25
Adaptive refinement grid: 5 5 5

Refinement threshold: Berry curvature >100.00 bohr^2
Points triggering refinement: 42( 0.27%)

Fermi energy (ev): 12.6283

AHC (S/cm) x y z
========== 2.4602 -2.4602 574.2950

Since these are quite demanding calculations, we only report the value of the AHC for a 125×
125× 125 BZ mesh with a 5× 5× 5 adaptive refinement grid (see snippet below). The value for
the z -component is 729.8276 (Ωcm)−1, which is in much closer agreement with the converged
result from Refs. 4 and 3. Also, the magnitude of x,y-component is greatly reduced as expected.



wannier90 v3.1.0: Solution booklet 61

125× 125× 125 BZ mesh with a 5× 5× 5 adaptive refinement grid

Properties calculated in module b e r r y
------------------------------------------

* Anomalous Hall conductivity

Regular interpolation grid: 125 125 125
Adaptive refinement grid: 5 5 5

Refinement threshold: Berry curvature >100.00 Ang^2
Points triggering refinement: 1818( 0.09%)

Fermi energy (ev): 12.6283

AHC (S/cm) x y z
========== -0.2775 0.2775 729.8276

• The Wannier-interpolation formula for the Berry curvature comprises three terms, denoted J0,
J1, and J2 in Ref. 5.

From Ref. 4
− 2 ImGαβ = J0 + J1 + J2, (6)

where
Gαβ = Tr[(∂αP̂ )Q̂ĤQ̂(∂βP̂ )] (7)

The three components J0, J1 and J2 for the k-point sampling of 125× 125× 125 and a 5× 5× 5
adaptive refinement grid are shown in the snippet below

J0 term : 0.0002 -0.0002 2.8479
J1 term : 0.0004 -0.0004 18.4855
J2 term : -0.2782 0.2782 708.4942
-------------------------------------------

Optical conductivity

• The optical conductivity tensor of bcc Fe with magnetization along ẑ has the form

σ = σS + σA =

σxx 0 0
0 σyy = σxx 0
0 0 σzz

 +

 0 σxy 0
−σyx 0 0

0 0 0

 (8)

• The DC AHC calculated earlier corresponds to σxy in the limit ω → 0. At finite frequency
σxy = −σyx acquires an imaginary part which describes magnetic circular dichroism (MCD).
Compute the complex optical conductivity for ~ω up to 7 eV

The plot for the ac AHC is shown in Fig. 61.

• Compare the ω → 0 limit of σxy with the result obtained earlier by integrating the Berry curvature.
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Figure 61: Plot of the real part of the complex optical conductivity with a 50× 50× 50 k-point mesh
(black) and 125× 125× 125 k-point mesh (red). The inset is a magnification of the region [0-0.1] eV.
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Figure 62: The magnetic circular dichroism from interpolation of the Kubo-Greenwood formula.

The result obtained by integrating the Berry curvature is 729.83 (Ωcm)−1 and the ω → 0 limit of
the complex optical conductivity is 669.37 (Ωcm)−1.

Plot the MCD spectrum.

The plot of the magnetic circular dichroism is shown in Fig. 62.
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Further ideas

• Recompute the AHC and optical spectra of bcc Fe using projected s, p, and d-type Wannier
functions instead of the hybridrised MLWFs (see Example 8), and compare the results.

First we have to modify the projection block in the input file Fe.win as did in Ex. 8

begin projections Fe:s;p;d end projections

Then we need to re-do points 3,4 and 6.
Below there is the extract from the output file Fe.wpout. The result obtained from s, p and d
projections for the z component, i.e. σxy, of the AHC is exactly the same as the one obtained
from sp3d2, dxy, dxz, and dyz projections. Plot of AHC and MCD are shown in Fig. 63.

With adaptive refinement

Properties calculated in module b e r r y
------------------------------------------

* Anomalous Hall conductivity

Regular interpolation grid: 25 25 25
Adaptive refinement grid: 5 5 5

Refinement threshold: Berry curvature >100.00 bohr^2
Points triggering refinement: 42( 0.27%)

Fermi energy (ev): 12.6283

AHC (S/cm) x y z
==========
J0 term : 0.0006 -0.0006 -2.9033
J1 term : 0.0032 -0.0032 10.0566
J2 term : 2.4564 -2.4564 567.1417
-------------------------------------------
Total : 2.4602 -2.4602 574.2950
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Figure 63: Left panel: Anomalous Hall conductivity. Right panel: Magnetic circular dichroism for ~ω
up to 7 eV, starting from s; p; d initial projections
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19: Iron—Orbital magnetization

• Outline: Calculate the orbital magnetization of ferromagnetic bcc Fe by Wannier interpolation.

1-6 These are the same steps performed for Ex. 17 and Ex. 18. Hence, they are not repeated here.

• The orbital magnetization is computed as the BZ integral of the quantity Morb(k) defined in Eq.
(12.20) of the User Guide.

Below we report Eq. (11.20) from the User Guide, and the total orbital magnetization as the
integral of Morb(k) over the BZ

Morb(k) =
∑
n

1

2
fnk Im 〈∇kunk| × (Hk + εk − 2εF)|∇kunk〉 (9)

Morb
tot = V

∫
dk

(2π)3
Morb(k) (10)

The two snippets below show the components of the total orbital magnetization computed
according to Eq. (10), and the spin magnetisation from the DFT calculation respectively

From Fe.wpout

Properties calculated in module b e r r y
------------------------------------------

* Orbital magnetization

Interpolation grid: 25 25 25

Fermi energy (ev) = 12.628300

M_orb (bohr magn/cell) x y z
======================

Local circulation : 0.0000 -0.0000 0.0935
Itinerant circulation: 0.0000 0.0000 -0.0180
--------------------------------------------------------

Total : 0.0000 -0.0000 0.0755

From scf.out

total magnetization = 0.00 -0.00 -2.22 Bohr mag/cell
absolute magnetization = 2.34 Bohr mag/cell

• Plot Morb(k) along high-symmetry lines and compare the result with Fig. 2 of Ref. 5.

Before comparing the result of our calculation with the result in Fig. 2 of Ref. 5, we need to
fix a unit-conversion problem in the python script Fe-bands+morb_z.py. In fact, the units of
Morb(k) are not Ry·Å2 as stated in the python script but eV·Å2 instead (as also stated in the
User Guide). Moreover, in Ref. 5 Morb(k) is given in atomic units, i.e. Hartree·bohr radii2. In
order to have a meaningful comparison we need to modify the python script accordingly. Open
Fe-bands+morb_z.py and modify the following lines
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Figure 64: Plot of Morb(k) calculated by Wannier interpolation along the path Γ–H–P in the Brillouin
zone.

data = np.loadtxt(’Fe-morb.dat’)
x=data[:,0]
y=data[:,3]

as

data = np.loadtxt(’Fe-morb.dat’)
x=data[:,0]
y=data[:,3] * 0.131234

where 0.131234 is the conversion factor from eV·Å2 to a.u. We also need to modify the label for
the y-axis from

pl.ylabel(r’$M^{\rm{orb}}_z(\mathbf{k})$ [ Ry$\cdot\AA^2$ ]’)

to

pl.ylabel(r’$M^{\rm{orb}}_z(\mathbf{k})$ [ a.u. ]’)

Now we can run the python script

$> python Fe-bands+morb_z.py

and look at the plot, here shown in Fig. 64. The difference between the quantities in the two plot
is roughly the −1

2 factor due to the two different definitions of Morb.

Plot Morb(k) together with the Fermi contours on the (010) BZ plane
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Figure 65: Plot of Morb(k) together with the Fermi contours on the (010) BZ plane
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20: Disentanglement restricted inside spherical regions of k-space LaVO3.

• Outline: Obtain disentangled MLWFs for strained LaVO3.

(a) LaVO3 (b) SrMnO3

Figure 66: Left: atomic structure of epitaxially-strained (tetragonal) LaVO3. Right: atomic structure
of epitaxially-strained (tetragonal) SrMnO3. Both structures have been plotted with the XCrySDen
program.

1-5 These are the usual steps to generate MLWFs and are not reported here.

• Inspect the output file LaVO3.wout. In the initial summary, you will see that the disentanglement
was performed only within one sphere of radius 0.2 around the point A = (0.5, 0.5, 0.5) in
reciprocal space:

*------------------------------- DISENTANGLE --------------------------------*
| Using band disentanglement : T |

...

| Number of spheres in k-space : 1 |
| center n. 1 : 0.500 0.500 0.500, radius = 0.200 |

• Compare the band structure that wannier90 produced with the one obtained using Quantum
ESPRESSO.

To obtain the band structure from the Quantum ESPRESSO calculation we can use the bands.x
program available at http://www.tcm.phy.cam.ac.uk/~jry20/bands.html, see mini-tutorial at
the end of Ex. 6. Here, we only report the .inp file used to generate the k-point mesh for the
non-scf calculation

http://www.tcm.phy.cam.ac.uk/~jry20/bands.html
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bands.x input file LaVO3.inp

7.03 0.00 0.00
0.00 7.03 0.00
0.00 0.00 7.6627

30

G 0.00000 0.00000 0.00000 M 0.50000 0.50000 0.00000
M 0.50000 0.50000 0.00000 X 0.50000 0.00000 0.00000
X 0.50000 0.00000 0.00000 G 0.00000 0.00000 0.00000
G 0.00000 0.00000 0.00000 Z 0.00000 0.00000 0.50000
Z 0.00000 0.00000 0.50000 A 0.50000 0.50000 0.50000
A 0.50000 0.50000 0.50000 R 0.50000 0.00000 0.50000
R 0.50000 0.00000 0.50000 X 0.50000 0.00000 0.00000

Remember to add the following line to the .bands file in order to show the eigenvalues at each
k-point.

verbosity = ’high’

Plot of the interpolated band structure is shown in Fig. (67). In the top panel, the full band
structure is shown. In the bottom panel a magnification around the Fermi energy is shown (similar
to Fig. 9 in the Tutorial).

Further ideas

• Try to obtain the Wannier functions using the standard disentanglement procedure . . .

Plots of the band structure of LaVO3 with full disentanglement and no disentanglement are
shown in Fig. (68). These are plotted against the quantum ESPRESSO band structure (solid
black lines) and the wannier90-interpolated one with disentanglement performed only within
a sphere centred in A (red dots). We see that the other two methods diverge from the DFT
calculation in region of k-space where the bands of interest are not entangled with other unwanted
bands. For example, in the zone between Γ and M and Z and A the interpolated bands with full
disentanglement and no disentanglement diverge substantially from the DFT calculation.

• In order to illustrate all possible cases, it is instructive to apply this method to SrMnO3 . . .

Plots of the interpolated bands for the different cases are shown in Fig. (69). In this case, the
disentanglement for all the Mn-3d-derived states (empty red circles in Fig. (69)) is only necessary
around the Γ point, as for all the other points and lines the bands of interest are well separated
from other bands lower in energy. However, if we only consider the eg states (solid blue circles in
Fig. (69)) then the situation is different as these states are entangled with the t2g states around
X. Of course the t2g states (solid green cones in Fig. (69)) are entangled with eg states around X
and with lower-lying states at Γ.
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Figure 67: Top panel: full band structure of epitaxially-strained (tetragonal) LaVO3 along the
Γ-M-X-Γ-Z-A-R-X from DFT calculation (solid black) and interpolation from wannier90 (red dots).
Bottom panel: magnification around Fermi energy 16.6049 (dashed line). The disentanglement was
performed only for k-points within a sphere of radius 0.2 Å−1 centred in A.
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21: Gallium Arsenide—Symmetry-adapted Wannier functions

• Outline: Obtain symmetry-adapted Wannier functions out of four valence bands of GaAs. For the
theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B
87, 235109 (2013).

Figure 70: Unit cell of GaAs crystal plotted with the XCrySDen program.

1-3 These are common to all calculations, and they have already been performed in previous examples.
Hence, no results are shown here.

The space group of GaAs is F−43m (sequential number 276 in the International Tables for
Crystallography, Vol. A). In our example the Ga atom is placed at the origin, whose Wyckoff
letter is a and its multiplicity is 4. The site symmetry group of a is −43m, which is isomorphous
to the full point group of the crystal, also known as T 2

d . This is due to the fact that F−43m is
symmorphic. Hence, a contains 24 symmetry operations (see Tab. 12). The As atom is placed at
(0.25,0.25,0.25) in fractional coordinates, whose Wyckoff letter is c and its multiplicity is 4. It
also contains 24 symmetry operations (see Tab. 13). The list of site-symmetry operations may be
found in the .sym file and in the output file pw2wan.out. In the latter, the list is in the section
relative to the computation of the Dmn matrix (see Ref. 7).

Table 12: 24 symmetry operations for the Wyckoff
position 4a in −43m [6].

x,y,z -x, -y, z -x,y,-z x,-y,-z z,x,y z,-x,-y
-z,-x,y -z,x,-y y,z,x -y,z,-x y,-z,-x -y,-z,x
y,x,z -y,-x,z y,-x,-z -y,x,-z x,z,y -x,z,-y
-x,-z,y x,-z,-y z,y,x z,-y,-x -z,y,-x -z,-y,x

Table 13: 24 symmetry operations for the Wyckoff
position 4c in −43m [6].

x,y,z -x+1/2,-y+1/2, z -x+1/2,y,-z+1/2 x,-y+1/2,-z+1/2
z,x,y z,-x+1/2,-y+1/2 -z+1/2,-x+1/2,y -z+1/2,x,-y+1/2
y,z,x -y+1/2,z,-x+1/2 y,-z+1/2,-x+1/2 -y+1/2,-z+1/2,x
y,x,z -y+1/2,-x+1/2,z y,-x+1/2,-z+1/2 -y+1/2,x,-z+1/2
x,z,y -x+1/2,z,-y+1/2 -x+1/2,-z+1/2,y x,-z+1/2,-y+1/2
z,y,x z,-y+1/2,-x+1/2 -z+1/2,y,-x+1/2 -z+1/2,-y+1/2,x
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One s-like Wannier function centred at Ga

1-5 Compute the symmetry-adapted MLWF.

The −43m site-symmetry group is isomorphous to T 2
d . From the table of characters of T 2

d we
find 5 irreducible representations (irrep). The irrep with character A1 is a one-dimensional
representation, whose eigenfunction is spherically symmetric. Hence, a single s-like orbital in
(0,0,0) may be used. However, this is not enough as the choice of the initial guess must also be
compatible with the symmetry of the bands. In fact, if we tried to wannierise only the lowest
band, excluding all the other bands (this can be done by changing the input file as num_wann =
1, num_bands = 1 and exclude_bands = 1-5, 7-19), the resulting 1× 1 U(k) could not fulfill
Eq. 19 in Ref. 7. Similarly, if we tried to wannierise only the three top bands.

begin projections
f= 0.0, 0.0, 0.0 : s
end projections

----------------
*** Compute DMN
----------------

Number of symmetry operators = 24
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Figure 71: One s-like symmetry-adapted Wannier function centred on the Gallium atom in GaAs.
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Three p-like Wannier functions centred at Ga

1-5 Compute the symmetry-adapted MLWFs.

Another representation of −43m, namely T2, has dimension 3. Its eigenfunctions are linear
functions proportional to x, y, z. Hence, we can use three p-like orbitals (px, py, pz) centred at
(0,0,0).

begin projections
f= 0.0, 0.0, 0.0 : p
end projections
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Figure 72: Three p-like symmetry-adapted Wannier functions centred on the Gallium atom in GaAs.
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One s-like and three p-like Wannier functions centred at Ga

1-5 Compute the symmetry-adapted MLWFs.

We can construct also construct a representation of dimension 4 = 3 + 1 for the 4 valence bands
by specifying 1 s-like orbital and 3 p-like orbitals on Ga, which corresponds to the irreducible
representations A1 and T2 respectively. However, it would not be possible to

begin projections
f= 0.0, 0.0, 0.0 : s
f= 0.0, 0.0, 0.0 : p
end projections
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Figure 73: One s-like and three p-like Wannier functions centred on the Gallium atom in GaAs.
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One s-like and three p-like Wannier functions centred at As

The site-symmetry group for the As anion centred at (0.25, 0.25, 0.25) is −43m as well and we can
perform the same analysis done for the Ga cation. Contrary to the Ga case, for the As anion it is
possible to wannierise the bottom band from one s-like orbital centred at (0.25, 0.25, 0.25) and the top
three bands from three p-like orbitals centred at (0.25, 0.25, 0.25) (see Fig. 75).

1-5 Compute the symmetry-adapted MLWFs.

begin projections
f=0.25,0.25,0.25 : s
f=0.25,0.25,0.25 : p
end projections
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Figure 74: One s-like and three p-like Wannier functions centred on the Arsenic atom in GaAs.
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Figure 75: Interpolated wannier90 bands of GaAs starting from a) 1 s-like centred on the Arsenic
anion and b) three p-like orbitals centred on the Arsenic anion, respectively.
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Four s-like Wannier functions centred on the four Ga-As bonds

From a group-theoretical point of view, the case of four s-like functions centred on four covalent bonds,
correspond to the irrep A1g of the site-symmetry group .3m of the Wyckoff position e. There are 6
symmetry operations for each equivalent position (0.125, 0.125, 0.125), (0.125, 0.125, -.375), (-.375,
0.125, 0.125) and (0.125, -.375, 0.125). The combined 24 symmetry operations turn out to be exactly
that of the full −43m group.

1-5 Compute the symmetry-adapted MLWFs.

begin projections
f= 0.125, 0.125, 0.125: s
f= 0.125, 0.125, -.375: s
f= -.375, 0.125, 0.125: s
f= 0.125, -.375, 0.125: s
end projections
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Figure 76: Four sp3-like symmetry-adapted Wannier functions centred on the Ga-As bonds in GaAs.
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22: Copper—Symmetry-adapted Wannier functions

• Outline: Obtain symmetry-adapted Wannier functions for Cu. By symmetry-adapted mode, for
example, we can make atomic centered s-like Wannier function, which is not possible in the usual
procedure to create maximally localized Wannier functions. For the theoretical background of the
symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

Figure 77: Unit cell of Copper crystal.

Each directory creates s-like symmetry-adapted Wannier function centered at different position on top
of atomic centered d-like Wannier functions.

Below it is reported the README file from the example directory

# Symmetry-adapted mode

Additional input in Cu.win file
site_symmetry = .true. (default value is .false.)
symmetrize_eps = 1d-9 (default value is 1d-3 )

Additional input in Cu.pw2wan file
write_dmn = .true.

Working directories
s_at_0.00 : s-like Wannier function centered at (0,0,0) + atomic-centered d-like WFs
s_at_0.25 : s-like Wannier function centered at (1/4,1/4,1/4) + atomic-centered d-like WFs
s_at_0.50 : s-like Wannier function centered at (1/2,1/2,1/2) + atomic-centered d-like WFs

In s_at_0.25, we use an additional flag "read_sym = .true." to customize the symmetry operations
to be used.
We exclude the inversion symmetry to create s-like Wannier function centered at (1/4,1/4,1/4).
Information on symmetry operations without inversion symmetry is taken from GaAs calculation.
See more detailed discussion in R. Sakuma, Phys. Rev. B 87, 235109 (2013).



80 wannier90 v3.1.0: Solution booklet

The space group of Cu is Fm−3m (sequential number 225 in the International Tables for Crystallography,
Vol. A).

s-like Wannier function centred at the origin

1-5 Compute the symmetry-adapted MLWFs.

In this example both the s-orbital and d-orbitals is placed at the origin, whose Wyckoff letter
is a and its multiplicity is 4. The site symmetry group of a is m−3m, which is isomorphous to
the full point group of the crystal, known as Oh and it contains 48 symmetry operations. The
six MLWFs obtained by placing both the initial s-orbital and the d-orbitals on the Cu atom are
shown in Fig. 78.

(a) s-like WF (b) eg-like WF (c) eg-like WF

(d) t2g-like WF (e) t2g-like WF (f) t2g-like WF

Figure 78: Six symmetry-adapted MLWFs in Cu. The initial s-orbital is placed at the origin.
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s-like Wannier function centred at (0.25,0.25,0.25)

1-5 Compute the symmetry-adapted MLWFs. In this example the s-orbital is placed at (0.25,0.25,0.25),
whose Wyckoff letter is c and its multiplicity is 8. The site symmetry group of c is −43m, which
is not isomorphous to the full point group of the crystal (Oh). This site symmetry group contains
only 24 symmetry operations, i.e. it comes from Oh when inversion is removed. This is the reason
why the flag read_sym =.true. in the .pw2wan file and an additional input is required, namely
Cu.sym. In fact, this file is not automatically generated by pw2wannier90.x but is given as input
to be read. The six MLWFs obtained by placing the initial s-orbital at (0.25,0.25,0.25) and the
d-orbitals on the Cu atom are shown in Fig. 79.

(a) s-like WF (b) eg-like WF (c) eg-like WF

(d) t2g-like WF (e) t2g-like WF (f) t2g-like WF

Figure 79: Six symmetry-adapted MLWFs in Cu. The initial s-orbital is placed at (0.25,0.25,0/25).
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s-like Wannier function centred at (0.5,0.5,0.5)

1-5 Compute the symmetry-adapted MLWFs. In this example the s orbital is placed at (0.5,0.5,0.5),
whose Wyckoff letter is b and its multiplicity is 4. The site symmetry group of c is m−3m, which
is isomorphous to the full point group of the crystal (Oh). Hence, no additional input file is
needed in this case. The six MLWFs obtained by placing the initial s-orbital at (0.5,0.5,0.5) and
the d-orbitals on the Cu atom are shown in Fig. 80.

(a) s-like WF (b) eg-like WF (c) eg-like WF

(d) t2g-like WF (e) t2g-like WF (f) t2g-like WF

Figure 80: Six symmetry-adapted MLWFs in Cu. The initial s-orbital is placed at (0.5,0.5,0.5).
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23: Platinum—Spin Hall conductivity

• Outline: Calculate spin Hall conductivity (SHC) and plot Berry curvature-like term of fcc Pt
considering spin-orbit coupling. To gain a better understanding of this example, it is suggested to
read Ref. 8 for a detailed description of the theory and Ch. 12.5 of the User Guide.

1-6 Compute the MLWFs, spin Hall conductivity and kpath, kslice plots.

Spin Hall conductivity

• SHC converges rather slowly with k-point sampling, and a 25 × 25 × 25 kmesh does not yield
a well-converged value. To get a converged SHC value, increase the density of kmesh and then
compare the converged result with those obtained in Refs. 8 and 9.

The file Pt-shc-fermiscan.dat contains the calculated SHC. The SHC for a 25× 25× 25 kmesh
are shown in the snippet below.

25× 25× 25 kmesh

#No. Fermi energy(eV) SHC((hbar/e)*S/cm)
1 6.000000 0.00000000E+00

...
120 17.900000 0.17230482E+04
121 18.000000 0.17054542E+04
...
201 26.000000 0.22665760E+03

The calculated Fermi energy obtained from Quantum ESPRESSO is 17.9919 eV. It may vary among
different calculations due to the differences between versions of Quantum ESPRESSO or compilers,
and these may lead to deviations from the following results. However, the difference should be
acceptable and the calculated SHC should be essentially the same.

The SHC at the Fermi energy is 1705 (~/e)S/cm. The converged results reported in Refs. 8 and
9 are around 2200 (~/e)S/cm. Hence, a 25 × 25 × 25 kmesh clearly gives an inaccurate value
(∼ 22.5% error).

Since these are quite demanding calculations, we only report the value of the SHC for a 100×
100× 100 kmesh (see snippet below). The value for the SHC at Fermi energy is 2207 (~/e)S/cm,
which is in much closer agreement with the converged result from Refs. 8 and 9.

100× 100× 100 kmesh

#No. Fermi energy(eV) SHC((hbar/e)*S/cm)
1 6.000000 0.00000000E+00

...
120 17.900000 0.21899191E+04
121 18.000000 0.22066678E+04
...
201 26.000000 0.24919920E+03

• To complete the previous discussions, we also compare the Fermi energy scan plots of the two
calculations as shown in the Fig. 81.

• The seedname.wpout will print the percentage of k-points which have been calculated at the
moment, as well as the corresponding calculation time, as shown in the following snippet.
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Figure 81: Fermi energy scan plots for calculations with 25 × 25 × 25 kmesh and 100 × 100 × 100
kmesh.

Pt.wpout

Properties calculated in module b e r r y
------------------------------------------

* Spin Hall Conductivity

Fermi energy scan

Calculation started
-------------------------------
k-points wall diff
calculated time time
---------- ---- ----

0% 0.0 0.0
10% 22.7 22.7
20% 36.5 13.8
30% 50.4 14.0
40% 64.4 14.0
50% 78.4 14.0
60% 92.5 14.1
70% 106.5 14.0
80% 120.4 13.9
90% 134.2 13.8
100% 147.9 13.7

Interpolation grid: 25 25 25

Using adaptive smearing
adptive smearing prefactor 1.414
adptive smearing max width 1.000 eV
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This might be helpful as you can roughly estimate the total computational time of your calculation,
or it might give credence to the code that it is actually functioning :). Note this report is merely
based on the “root” computation node. It is accurate if the postw90 is run in serial, or the load
on each node is balanced if running in parallel. However, the estimation is rough if loads are not
balanced among nodes. This may happen if the performance of nodes in your cluster are not
identical, or adaptive kmesh refinements are triggered so some nodes may compute much more
k-points than others. Besides, if you are careful enough, you may find the diff time of 10% is
much larger than later ones. This is caused by some done-once-and-for-all computations carried
out at the beginning, thus later computations are much faster.

Berry curvature-like term plots

• The band-projected Berry curvature-like term Ωspinγ
n,αβ (k) is defined as Eq. (12.22) in the User

Guide. Plot the band structure of Pt and color it by the magnitude of its band-projected Berry
curvature-like term Ωspinz

n,xy (k), and plot the k-resolved Berry curvature-like term Ωspinz
xy (k) along

the same path in the BZ.

With Fermi energy set as 17.9919 eV we obtain the energy bands colored by the Ωspinγ
n,αβ (k) and

the k-resolved Berry curvature-like term Ωspinz
xy (k) along high-symmetry lines as shown in Fig. 82,

which contains two plots calculated with different fixed smearing width.
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Figure 82: Top panels: Band structure of Pt along symmetry lines W-L-Γ-X-W-Γ, colored by the
Ωspinz
n,xy (k). Bottom panels: k-resolved Berry curvature-like term Ωspinz

xy (k) along the symmetry lines.

• Combine the plot of the Fermi lines on the (kx, ky) plane with a heatmap plot of the Berry
curvature-like term of spin Hall conductivity.

The plots of the Fermi lines with a heatmap of Ωspinz
xy (kx, ky, 0) are shown in Fig. 83.
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Figure 83: Calculated k-resolved Berry curvature-like term Ωspinz
xy (k) in the plane kz = 0 (note the

magnitude of Ωspinz
xy (k) is in log scale). Intersections of the Fermi surface with this plane are shown as

black lines.
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24: Gallium Arsenide—Frequency-dependent spin Hall conductivity

• Outline: Calculate the alternating current (ac) spin Hall conductivity of gallium arsenide consid-
ering spin-orbit coupling. To gain a better understanding of this example, it is suggested to read
Ref. 8 for a detailed description of the theory and Ch. 12.5 of the User Guide.

1-6 Compute the MLWFs and compute the ac spin Hall conductivity.

ac spin Hall conductivity

• The ac SHC of GaAs converges rather slowly with k-point sampling, and a 100× 100× 100 kmesh
does not yield a well-converged value. To get a converged SHC value, increase the density of kmesh
and then compare the converged result with those obtained in Refs. 8.

The file GaAs-shc-freqscan.dat contains the calculated ac SHC. The snippet below shows a
calculated result with 100× 100× 100 kmesh, a fixed smearing width of 0.05 eV and no scissors
shift applied.

100× 100× 100 kmesh

#No. Frequency(eV) Re(sigma)((hbar/e)*S/cm) Im(sigma)((hbar/e)*S/cm)
1 0.000000 -0.68114601E+00 0.00000000E+00

...
801 8.000000 -0.39471936E+01 -0.29928198E+02

The ac SHC is plotted as Fig. 84.

0 1 2 3 4 5 6 7 8
h̄ω (eV)

−4

−3

−2

−1

0

1

2

3

σ
sp

in
z

x
y

(h̄
ω

)
(×

10
2
S
/c

m
)

Re

Im

Figure 84: Frequency scan plot for GaAs ac SHC, using a low kmesh of 100× 100× 100.

• If further increasing the density of kmesh to 250× 250× 250, and using the adaptive smearing, a
nice converged plot could be produced as Fig. 85. Note that by using keywords
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shc_bandshift = true
shc_bandshift_firstband = 9
shc_bandshift_energyshift = 1.117

a scissors shift of 1.117 eV is applied. Fig. 85 can be viewed as Fig. 84 translated by ∼ 1 eV along
the horizontal axis.
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Figure 85: Frequency scan plots for GaAs ac SHC, using a dense kmesh of 250 × 250 × 250. Two
kinds of smearing are compared.
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