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1 Introduction

The MVSIM is a lightweight, realistic dynamical simulator for 2D (”2.5D”)
vehicles and robots. It is tailored to analysis of vehicle dynamics, wheel-
ground contact forces and accurate simulation of typical robot sensors (e.g.
laser scanners).

This package includes the C++ library mvsim, a standalone app and a
ROS node.
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2 Features

• Lightweight in memory, CPU and library requirements.

• Fully configurable via .xml ”world” files.

• World maps:

– Occupancy gridmaps: input as images or MRPT binary maps
(from icp-slam, rbpf-slam, etc.)

– Elevation meshes.

• Vehicle models:

– Differential driven (2 & 4 wheel drive).

– Ackermann steering (kinematic & dynamic steering, different me-
chanical drive models).

• Sensors:

– Laser scanners: Robots see each other, their own bodies, etc.

• Interface to vehicles: Choose among:

– Raw access to forces and motor torques.

– Twist commands (using internal controllers).
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3 World simulation

Simulation happens inside a World object. This is the central class for usage
from user code, running the simulation, loading XML models, managing GUI
visualization, etc. The ROS node acts as a bridge between this class and
the ROS subsystem.

World description is loaded using XML files that contain all the infor-
mation about world.

3.1 World files

All requisites of simulated world are described via configuration files so called
”world” files. They are represented as conventional XML documents.

Decent amount of examples can be found in mvsim tutorial folder.

3.1.1 General tags

World definition begins with tag <mvsim world>. To define simulation
timestep, use <simul timestep> with float value specified in seconds.

3.1.2 GUI options

GUI options are specified with tag gui. gui has several nested tags:

• <ortho> boolean - is camera orthographic or projective;

• <show forces> boolean - to show reaction forces on wheels with
lines;

• <force scale> float - scale of forces value to pixels

• <cam distance float - default camera distance in world units

• <fov deg> float - camera field of view in degrees

3.1.3 Scenario definition

Scenario defines the ”level” where the simulation takes place.
<element class=”occupancy grid”> depicts MRPT occupancy map

which can be specified with both image file (black and while) and MRPT
grid maps. <file> specifies file path to image of the map.

<element class=”ground grid”> is the metric grid for visual refer-
ence.

<element class=”elevation map”> is an elevation map (!experi-
mental). Mesh-based map is build of elevation map in simple bitmap where
whiter means higher and darker - lower.

This tag has several subtags:
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• <elevation image> - path the elevation bitmap itself

• <elevation image min z> - minimum height in world units

• <elevation image max z> - maximum height in world units

• <texture image> - path texture image for elevation bitmap. Mus
not be used with mesh color simultaneously

• <mesh color> - mesh color in HEX RGB format

• <resolution> - mesh XY scale

3.1.4 Vehicle descriptions

Tag <vehicle:class> depictd description of vehicle class. The attribute
name will be later referenced when describing vehicle exemplars.

Inside <vehicle:class> tag, there are tags <dynamics>, <friction>
and exemplars of <sensor>.

Vehicle dynamics At the moment, there are three types of vehicle dy-
namics implemented. Refer 4.3 for more information.

<dynamics> with attribute class specifies class of dynamics used. Cur-
rently available classes:

• differential

• car ackermann

• ackermann drivetrain

Each class has specific inner tags structure for its own configuration.

Common Every dynamics has wheels specified with tags <i wheel>
where i stand for wheel position index (r, l for differential drive and fr,
fl, rl, rr for Ackermann-drive)

Wheel tags have following attributes:

• pos - two floats representing x an y coordinate of the wheel in local
frame

• mass - float value for mass of the wheel

• width - float value representing wheel width 2

• diameter - float value to represent wheel diameter 2

Ackermann models also use <max steer ang deg> to specify maxi-
mum steering angle.

<chassis> is also common for all dynamics, it has attributes:
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• mass - mass of chassis

• zmin - distance from bottom of the robot to ground

• zmax - distance from top of the robot to ground

Controllers There are controllers for every dynamics type 4.4. In XML
their names are

• raw - control raw forces

• twist pid - control with twist messages

• front steer pid - [Ackermann only] - control with PID for velocity and
raw steering angles

Controllers with pid in their names use PID regulator which needs to be
configured. There are tags <KP><KI><KD> for this purpose. Also
they need the parameter <max torque> to be set.

Twist controllers need to set initial <V> and <W> for linear and
angular velocities respectively.

Steer controllers need to set initial <V> and <STEER ANG> for
linear velocity and steering angle respectively.

Ackermann-drivetrain model needs a differential type and split to be
configured. For this purpose there is a tag <drivetrain> with argument
type. Supported types are defined in 4.3.4. In XML their names are:

• open front

• open rear

• open 4wd

• torsen front

• torsen rear

• torsen 4wd

<drivetrain> has inner tags describing its internal structure:

• <front rear split>

• <front rear bias>

• <front left right split>

• <front left right bias>
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• <rear left right split>

• <rear left right bias>

which are pretty self-explanatory.

Friction Friction models are described in 4.2 and defined outside of <dy-
namics>. The tag for friction is <friction> with attribute class.

Class names in XML are:

• wardiagnemma

• default

Default friction 4.2.2 uses subtags:

• <mu> - the friction coefficient

• <C damping> - damping coefficient

In addition to default, Ward-Iagnemma friction includes subtags:

• A roll

• R1

• R2

that are described in 4.2.3.

Sensors Sensors are defined with <sensor> tag. It has attributes type
and name.

At the moment, only laser scanner sensor is implemented, its type is
laser. Subtags are:

• <pose> - an MRPT CPose3D string value

• <fov degrees> - FOV of the laser scanner

• <sensor period> - period in seconds when sensor sends updates

• <nrays> - laser scanner rays per FOV

• <range std noise> - standard deviation of noise in distance mea-
surments

• <angle std noise deg> - standatd deviation of noise in angles of
rays

• <bodies visible> - boolean flag to see other robots or not
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3.2 Vehicles instantiation

Outside of vehicle class, there is an infinite number of vehicles that can be
instantiated of this class.

Vehicle instances are defined with <vehicle> tag that has attributes
name and class. class must match one of the classes defined earlier with
<vehicle:class> tag.

Subtags are:

• <init pose> - in global coordinates: x, y, γ (deg)

• <init vel> - in local coordinates: vx,vy, ω (deg/s)

3.3 Simulation execution

Simulation executes step-by-step with user-defined ∆t time between steps.
Each step has several sub steps:

• Before time step - sets actions, updates models, etc.

• Actual time step - updates dynamics

• After time step - everything needed to be done with updated state

3.3.1 Logging

Each vehicle is equipped with parameters logger(s). This logger is not con-
figurable and can be rewritten programmaticaly.

Logger are implemented via CsvLogger class and make log files in CSV
format which then can be opened via any editor or viewer.

Loggers control is introduced via robot controllers, each controller con-
trols only loggers of its robot.

Best results in visualizing offers QtiPlot 1.
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Figure 1: Loggers with QtiPlot example

At the moment, following characteristics are logged:
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• Pose (x, y, z, α, β, γ)

• Body velocity (ẋ, ż, ż)

• Wheel torque (τ)

• Wheel weight (mwp)

• Wheel velocity (vx, vy)

Loggers support runtime clear and creating new session. The new session
mode finalizes current log files and starts to write to a new bunch of them.
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4 Physics used

4.1 Wheel dynamics

We introduce wheels as a mass with cylindrical shape (Figure 2). Each wheel
has following properties:

• location of the wheel as to the chassis ref point [m,rad] in local coor-
dinates Lw = {xw, yw,Φ}

• diameter dw [m]

• width ww [m]

• mass mw [kg]

• inertia Iyy

• spinning angular position φw [rad]

• spinning angular velocity ωw [rad/s]

Thus, each wheel is represented as W = {Lw, dw, ww,mw, Iyy, φw, ωw}

Figure 2: Wheel forces

4.2 Friction models

4.2.1 Friction models base

Friction model base introduces Friction input structure, that incorporates
forces of wheel

• weight on this wheel from the car chassis, excluding the weight of the
wheel itself w [N]
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• motor torque τ [Nm]

• instantaneous velocity

ν =

[
νx
νy

]
in local coordinate frame

4.2.2 Default friction

At the moment, there is only one basic friction model available for vehicles.
Default friction model evaluates ...

Default friction evaluates forces in the wheel coordinate frame:

νw =

[
νwx

νwy

]
= R(Φw) · ν

To calculate maximal allowed friction for the wheel, we introduce partial
mass:

mwp =
ww

g
+mw

Ff,max = µ ·mwp · g

Where µ is friction coefficient for wheel.
Calculating latitudinal friction (decoupled sub-problem):

Ff,lat = mwp · a = mwp ·
−νwy

∆t

Ff,lat = max(−Ff,max,min(Ff,lat, Ff,max))

Calculating wheel desired angular velocity:

ωconstraint =
2νwx

dw

Jdesired = ωconstraint − ωw

ωdesired =
Jdesired

∆t

Calculating longitudinal friction:
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Ff,lon =
1

R
· (τ − Iyy · ωdesired − Cdamp · ωw)

Ff,lon = max(−Ff,max,min(Ff,lon, Ff,max))

Simply composing friction forces to vector:

Ff =

[
Ff,lat

Ff,lon

]
With new friction, we evaluate angular acceleration (code says angular

velocity impulse, but the units are for acceleration) of the wheel:

α =
τ −R · Ff,lon − Cdamp · ωw

Iyy

Using given angular acceleration, we update wheel’s angular velocity:

ωw = ωw + α ·∆t
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4.2.3 Ward-Iagnemma friction

This type of friction is an implementation of paper from Chris Ward and
Karl Iagnemma [8].

Rolling resistance is generally modeled as a combination of static- and
velocity-dependant forces [17], [21]. Authors propose function with form
similar to Pacejka’s model [3] as a continuously differentiable formulation
of the rolling resistance with the static force smoothed at zero velocity to
avoid a singularity. The rolling resistance is

Frr = −sign(Vfwd) ·N · (R1 · (1− e−Aroll|Vfwd|) +R2 · |Vfwd|)

Where Aroll, R1, R2 are the model-dependent coefficients. The impact
of these coefficients is shown at figure 3 taken from original paper.

Figure 3: Ward-Iagnemma rolling resistance

This force Frr is then added to Ff,lon.
Default constants were chosen as in reference paper and showed good sta-

bility and robust results. In addition, they can be altered via configuration
file.
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4.3 Vehicle models

Vehicle models are fully configurable with world XML files.

4.3.1 Vehicle base class

Vehicle base incorporates basic functions for every vehicle actor in the scene.
It is also responsible for updating state of vehicles.

It has implementation of interaction with world. Derived classes re-
implement only work with torques/forces on wheels.

At the moment, no model takes into account the weight transfer, so
weight on wheels is calculated in this base class.

Vehicle base class also provides ground-truth for velocity and position.

pw =
pchassis
Nw

• Before time step:

– Update wheels position using Box2D

– Invoke motor controllers (reimplemented in derived classes)

– Evaluate friction of wheels with passed friction model

– Apply force to vehicle body using Box2D

• Time step - update internal vehicle state variables q and q̇

• After time step - updates wheels rotation

Center of mass is defined as center of Box2D shape, currently there is
no +Z mobility.

4.3.2 Differential driven

A differential wheeled robot is a mobile robot whose movement is based on
two separately driven wheels placed on either side of the robot body. It can
thus change its direction by varying the relative rate of rotation of its wheels
and hence does not require an additional steering motion.

Odometry-based velocity estimation is implemented via Euler formula
(consider revising, it doesn’t include side slip):

ωveh =
ωr ·Rr − ωl ·Rr

yr − yl

νx = ωl ·Rl + ω · yl
νy = 0
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Where ωveh is angular velocity of the robot, Ri - radius of the wheel, yi
is the y position of the wheel, ωi is the angular velocity of the wheel. All
calculations in the robot’s local frame.

Nothing more interesting here.

4.3.3 Ackermann driven

Ackermann steering geometry is a geometric arrangement of linkages in the
steering of a car or other vehicle designed to solve the problem of wheels on
the inside and outside of a turn needing to trace out circles of different radii.

Ackermann wheels’ angles are computed as following:

αouter = atan(cot(|α|+ w

2l
)

αinner = atan(cot(|α| − w

2l
)

where α is the desired equivalent steering angle, w is wheels distance and l
is wheels base. Outer and inner wheel are defined by the turn direction.

Odometry-based velocity estimation is implemented via Euler formula
(consider revising, it doesn’t include side slip):

ωveh =
ωrr ·Rrr − ωrl ·Rrr

yrr − yrl
νx = ωrl ·Rrl + ω · yrl

νy = 0

Where ωveh is angular velocity of the robot, Rri - radius of the rear wheel,
yri is the y position of the rear wheel, ωri is the angular velocity of the rear
wheel. All calculations in the robot’s local frame.

4.3.4 Ackermann-driven with drivetrain

This type of dynamics has the same geometry as simple Ackermann-driven
robots. However, its powertrain is completely different.

Instead of one ”motor” per wheel, this type of dynamics incorporates
one ”motor” linked to wheels by differentials.

There are two types of differentials:

• Open differntial

• Torsen-like locking differential [7]

Each type of differential can be linked with following configurations:

• Front drive

• Rear drive
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• 4WD

Split is customizable between all axes.
As engine plays controller, whose torque output is then fed into differ-

entials.
For open differential act the following equations:

τFL = τmotor ·Ks,f ·Ks,frl

τFR = τmotor ·Ks,f · (1−Ks,frl)

τRL = τmotor ·Ks,r ·Ks,rrl

τRR = τmotor ·Ks,r · (1−Ks,frl)

Where Ks,f ,Ks,frl,Ks,rrl are split coefficients between axes.
Different things happen for Torsen-like differentials. As this type is self-

locking, its torque output per wheel depends on wheel’s velocity. Here is the
function of selecting torque on the next time step based on previous time
step velocity. First, introduce the bias ratio - the ratio indicating how much
more torque the Torsen can send to the tire with more available traction,
than is used by the tire with less traction. This ratio represents the ”locking
effect” of the differential. By default, it is set to b = 1.5

ω1, ω2 and t1, t2 are the output axles angular velocities and torque splits
respectively. Ks is differential split when it is not locked.

ωmax = max(|ω1|, |ω2|)

ωmin = min(|ω1|, |ω2|)

δlock = ωmax − b · ωmin

δt =

{
δlock · ωmax, if δlock > 0

0, if δlock ≤ 0

f1 =

{
Ks · (1− δt) if |ω1| − |ω2| > 0

Ks · (1 + δt)

f2 =

{
(1−Ks) · (1 + δt) if |ω1| − |ω2| > 0

(1−Ks) · (1− δt)

t1 =
f1

f1 + f2

17



t2 =
f2

f1 + f2

Torque delivery for 2WD is pretty straightforward. There is one input
from ”motor” and two outputs to wheels, so wheel torques are:

τi = τmotor · ti
where ti is the output of Torsen differential for i-th wheel.
With 4WD, torque is first split with Torsen to front and rear parts, each

of them is than split independently with another Torsen.
At the moment, there is no model of the engine and thus no feedback of

tires torque to engine.

4.4 Controllers

Different vehicles have different controllers. At the moment, differential and
Ackermann drives have their own controllers.

Controllers are divided into several types:

• Raw forces

• Twist

Ackermann has controller, which controls steering angle and speed.
Controllers’ input and output are described by dynamics’ classes that

they use.

4.4.1 Differential raw controller

This type of controller has simple response to user’s input integrating wheel
torque with each simulation frame.

4.4.2 Differential Twist controller

Differential twist controller uses PID regulator to control linear and angular
speed of the robot.

Setpoints for vr and vl are calculated as following:

vl = ν − ω

2
· w

vr = ν +
ω

2
· w

where ν is desired linear velocity and ω is desired angular velocity.
Inverted formula are suitable to get actual velocities from odometry es-

timates.
Then, velocity of the wheels is controlled with PID regulator.
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4.4.3 Ackermann raw controller

As a raw differential controller, raw Ackermann controller integrates user
input and sets wheel torques and steering wheel angle.

4.4.4 Ackermann twist controller

Ackermann twist controller uses PID regulator to control wheel torques re-
sponding to angular and linear velocity commands. Turn radius and desired
steering angle are calculated:

R =
νs
ωs

α = atan(
w

r
)

Desired velocities for wheels are computed by rotating desired linear ve-
locity to the steering angle. In the same way, actual velocities from ”odom-
etry” are computed.

Then, torque of separate wheels is controlled with PID regulators for
each wheel.

4.4.5 Ackermann steering controller

Ackermann steering controller takes as input linear speed an steering angle.
Then, it executes Ackermann twist controller to control wheels’ torques.

4.4.6 Ackermann-drivetrain controllers

These controllers’ steering is identical to Ackermann contollers, however,
their torque part is different.

These controllers’ output acts like ’engine’ for drivetrain. Instead of
separate outputs to wheels, it has one torque output to differentials that
will split it to separate wheels.
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