A Probabilistic Framework for

S Learning Kinematic Models of
g Articulated Objects
-
=1
AIS“;‘?‘"EN‘“ Jurgen Sturm

University of Freiburg, Germany

Motivation

Service robots in domestic environments
need the capability to deal with articulated
objects

= Cabinets »w;w
= Drawers
= Doors

= Windows

= Fridge

= Table

= Garage door

Problem: Furniture is different in each home

Motivation

= Why learn a kinematic model?

= Improve interaction skills over time
= Generalize to unseen objects

= Allows robot to answer questions, such as:
= [s this a door?
= Did I succeed in opening the door?
= In what state is the door?
= In which other states can the door be?
= How far can I open this door?

Goal of our Approach:
Learn a articulated scene model

{door handle} [drawer} [drawer}
T rotational prismatic prismatic
[door cabinet
rotational rigid

‘wall/floor

Goal of our Approach:
Learn a kinematic scene model

[door handle} [drawer] [drawer}
T rotational prismatic prismatic
[door cabinet
otational rigid
PP (wall/floor |

1. learn models describing the relationship between
two object parts

2. infer the kinematic topology of the scene (which
object parts are connected in which way)

Related Work (1)

= Door and door handle detection
= Robust control

= Door locations specified in map
= Scripted turn and push motion

[Meeussen, Wise, Glaser, Chitta, McGann, Mihelich,
Marder-Eppstein, Muja, Eruhimov, Foote, Hsu, Rusu, Marthi,
Bradski, Konolige, Gerkey, Berger, ICRA 2009]

Related Work (2)

= Motion Capture and Video
= 2D/3D Feature Tracks

= Recover stick figures

= Learns graphical model

[Ross, Tarlow and Zemel, IJCV 2010]

Related Work (3)

= Manipulator + Camera

= Interactive Perception

= Tracks KLT-Features

= Min-cut algorithm on feature graph

[Katz and Brock, RSS 2008]

Features of our approach

= Fully 3D

= Accurate kinematic models

= Recover structure

= Control object with a manipulator
= Open-source, well-documented, ..

Topics covered in this talk

Bayesian learning of kinematic models for:

1. Articulated links

= Accurate model fitting for articulated links
= Bayesian model comparison

2. Articulated objects
(Consisting of multiple articulated links)
= Structure selection
= Estimating the effective DOFs

3. Integration in ROS

Part 1: Problem Definition

= Given a sequence of pose observations of
an articulated link ...

D, = (zl1,22,..., 2

where z! € SE(3) is a 3D pose including
position and orientation

= ... estimate the most likely model and
parameter vector

M, 0 = arg maxp(M, 0 | D,)
M

Y

Process Model

= Kinematic model

= Configuration

= True pose

= Observed pose

Bayesian Model Inference

Solving
M, 0 = argmaxp(M, 0 | D,)

Y

can be split into two steps of inference:

1. Model Fitting
0 = argmaxp(0 | D,, M)
o

2. Model Comparison
M = arg max/p(/\/l,H | D,)do
M

Model Fitting (1)

= Fit different model classes:
= Rigid Model =N
= Prismatic Model ==

= Rotational Model ‘;\'
= Gaussian Process Model J

= Each model has a
= Forward kinematics function A = f/\/l,e(q}

» Inverse kinematics function q = fx/lle(A)

Model Fitting (2)

= Maximume-likelihood estimator for each
model (MLESACQC)

§ = argmaxp(D, | M, 0)
o

= Robust data likelihood

= Assume that the process noise is sampled from a
mixture of a uniform distribution and a Gaussian
distribution

A 4+ N(0,3) ifinlier
2y umw) if outlier

Prismatic Model

= Parameters:
= origin a
= axis e of movement

= Forward kinematics function
fMprismaticyg(Q) — adeq

= Tnverse kinematics function

—1
M Prismatic Q(Z) — eTtTans(a S Z)

Rotational Model

= Parameters

= center of rotation and
rotation axis cC

= rigid transform r

= Forward kinematics function
erotational’g(Q) — COD ROtZ(Q) Por

= Tnverse kinematics function
X/llrotationalyg (Z) — ROtgl(C @ (Z @ I'))

Garage Door: A Two-bar Link

= Garage door runs in a vertical and a
horizontal slider

= Neither rotational, nor prismatic motion

= There are objects which cannot be
explained well by “standard” models

A Non-parametric Model (1)

= For a articulation model, we need to define
= A forward kinematics function
= An inverse kinematics function

= Assume that the data lies on
(or close to) a low dimensional manifold in RO

A Non-parametric Model (1)

= Non-linear dimensionality reduction
technique

= Locally Linear Embedding (LLE; other
alternatives: PCA, ISOMAP, t-SNE, ..)

= Example: 2D manifold embedded in 3D
space

wate i 3
L]
]

l1.1.
L)

gofF

o&nﬂ'
=

|
(=]
B
ll". . 2% o
I_P‘J -

[Roweis, 2000]

A Non-parametric Model (3)

* Find latent low dimensional coordinates on
the manifold - provides configurations of
the object

W o o
C ?ﬂ §
@
e, s 1
2 e
t'??g? g T 1
I d.l 3} & o s ,:q'- .
ey O
- g
O Meastd™, 8 “@fd
] —-——{_ e _f_:'.f"”'_fE
0 10 5

[Roweis, 2000]

A Non-parametric Model (4)

= Then learn a Gaussian process regression
modeling the forward kinematics

faer gla) =z + ¢

+ data points
— mean
O variance

[Rasmussen, 2006]

A Non-parametric Model (5)

= Find latent low dimensional coordinates on the
manifold > dimensionality reduction using locally
linear embedding (LLE) provides inverse kinematics

Fep o) = +6

= Then learn a Gaussian process regression modeling
the forward kinematics

famer g(d) =z 4 €

Model Evaluation (1)

= How to evaluate the data likelihood?

p(z | M, 0) =7

= Configuration is latent - integrate over all
possible configurations

p(z | M,0) = [p(z | a4, M,0)p(a)da

= Approximate integral by evaluating at most
likely configuration

Model Evaluation (2)

= Estimate configuration

q= fx/lljg (z)
= Predict expected pose
A = fr0(Q)

= Compare prediction with observation

p(z | A) ocexp (~||A —2|?/0?) +
= Approximate data likelihood
p(z | M, 0) = p(z | A)p(q)

Model Selection

= Select the model that maximizes the
posterior probability

P

M = arg max/p(/\/l,e | D,)do
M

= Solve this using the Bayesian Information
Criterion (BIC)

BIC(M) = —2logp(D, | M,0) + klogn

Neg. data likelihood Penalty on
model complexity

= Select model that minimizes the BIC
M = arg min BIC(M)
M

Examples 1/3

drawer

Examples 2/3

dishwasher .. and tray

Examples 3/3

water tap valve of a radiator

Online Estimation and Control

= Learn kinematic model while manipulating
articulated object

Position of

Articulated Object

Model Fit-

End Effector

Arm Control [

CEP

Cartesian Equi-
librium Point
GGeneration

ting and Se-
lection

M, 0

~

Zta*]t

Model Prediction

Experimental Setup

= Experimental setup:
= Given: 3D location of handle + initial direction

= Robot estimates kinematic model online and in
real-time

= Robot uses estimated model for control
» 5 different mechanisms

Experimental Results
= Video:

Joint work with Advait Jain and Charlie Kemp

= Success rate: 37 out of 40 trials (92.5%)

Exploiting Prior Information

= So far, robot learns a new model for each
newly object from scratch

= However: most articulated objects in a
household belong to a few different classes

= Doors are of same/similar size
= Standardized dimensions of kitchen interior

= Idea:
= Find small set of representative models

= Utilize previously learned models when handling
new objects

Model Clustering

= Given two observed trajectories, should we
select one or two models?

= Bayesian model comparison

If p(M]__|_2 | D) > p(M{, M5 | D)

Then: Learn single model Else: Learn two models
(single set of parameters (double set of parameters
but might fit data worse) but might fit data better)

Model Clustering (2)

= Incremental clustering
= Can be done online

= Estimated model benefits from larger
dataset

= Bayesian model comparison:
If max p(Mq,..., M

1=1,....m

M

j+new
> p(Mpew, My, ..., M

Then: Merge with model j
Else: Add new model

m

m

Model Clustering

y [m]

04 -0.2 0 -0.4 -0.2 0

X [m] X [m]

= 37 trajectories
= Correctly clustered into 5 models

Z |m]

Exploiting Prior Information

| | | | | | | | |
without learned prior models

0.3 FA
0.2
0.1

0

with learned prior models ==-==----

pred. error [m]

0 0.102030405060.708 09 1

ratio observed trajectory vs. full trajectory

= Using prior information significantly
improves prediction accuracy

Part 2: Articulated Objects

= S0 far, we considered only articulated
objects consisting of a single link, thus of
two parts

= Now, extend to p>2 parts...

Process Model for 2 parts

= Kinematic model

= Configuration
= True poses

= True transformation

1 Y2 = Observed poses

Process Model for 3-chain

Process Model for 4-chain

X

o
(4 (4 t t
X2 X3 X4

1
1

(o

Kinematic Graph (1)

= Kinematic structure is unknown - consider
all possible structures, and select the best

one
= Simplified graphical model (object parts and
models only)
cabinet drawer 1 drawer 2

rigid model

prismatic model

rotational model

Gaussian process model”

Kinematic Graph (2)

= Describe articulated objects as a kinematic
graph G = (Vg, Eg)

= Vertices Vo = {1, - ,p} correspond to object
parts

= Edges F/ C Vg X V(o correspond to
articulated links

= Each edge has an associated articulated link
model M — {Mwaew | (Zaj) < EG}

Problem Definition

= Given a sequence of t pose observations of
an articulated object consisting of p parts..

/Yi yi yg\
Dy=|"7 "2 17
\Yp Yi - Yp)

= Estimate the most likely kinematic graph G

G = arg maxp(G | Dy)
G

Bayesian Model Inference

Solving

G = arg maxp(G | Dy)
G

can be split into four steps of inference:

1. Link-wise model fitting (as before)

2. Link-wise model selection (as before)
3. Object-wise structure selection
4. Object-wise DOF estimation

Structure Selection (1)

= Select the graph that maximizes the
posterior probability

Eqo = arg max/p(Eg,M | Dy)dM
Lg

= Select graph that minimizes the BIC

Eqo = arg min BIC(E)
e

Structure Selection (2)

= How can we find the graph that minimizes
the BIC?

= Given a graph, how can we compute its
data likelihood?

Structure Selection (3)

= How can we find the graph that minimizes
the BIC?

= For kinematic trees:
= Minimum spanning tree problem
= Efficient and optimal solution

= For general kinematic graphs (including
closed kinematic chains):

= Full evaluation over all possible structures
= Or approximation using search heuristic

Structure Selection (4)

= Given a graph, how can we compute its
data likelihood?

= Insight: edges of kinematic trees are
mutually independent

Eg=argmin Y BIC(M,;)
BG (ij)eEq
= This corresponds to a minimum spanning
tree problem
= Fully connected graph
= Assign edge costs

cost;; = BIC(MZ-]-)

Example: Cabinet with Drawers

cabinet drawer 1 drawer 2

BIC(M!191d) =
BIC(Mgrism.) _
BIC(M[Ot) =

BIC(MSP) = 3316 331.0 3318

= Compute all models between all edges
= Select the minimum spanning tree

Example: Car Door

Example: Office Door

Example: Desk Lamp

Estimate effective DOFs

= Closed chain objects might have less DOFs
than the sum of their links

3 links 4 links
3 DOF 1 DOF

Estimate effective DOFs (2)

= Closed chain objects might have less DOFs
than sum of their links

= Lower dimensional configuration space
increases likelihood of a single configuration

p(y | M,0) = /p(y | q, M, 0)p(q)dq

=) Additionally optimize number of DOFs
during structure selection

Example: Open Kinematic Chain

Example: Closed Kinematic
Chain

Evaluation of DOFs

open kinematic chain

—— DOFs

0 50 100 150

training samples n

200

closed kinematic chain

| | |
—— DOF's

50 100 150

training samples n

200

Articulated Objects in ROS

= Stacks and Packages

= Messages and Services
= Nodes

= Useful Scripts

= Tutorials and Demos

mp http:// www.ros.org/wiki/articulation

The articulation Stack

= Packages in the articulation Stack:
= articulation_msg
= articulation_models
= articulation_rviz_plugin
= articulation_structure
= articulation_tutorials

Observation Sequence: TrackMsg

= Generic message for observed track
= Track identification number
» Observed poses D, = (z',...,2")

= Additional information (configuration q, ..)

articulation_msgs/TrackMsg.msg:

Header header # Timestanp and frane

int32 id # user-specified track id

geonetry_nsgs/ Pose[] pose # observed trajectory

geonetry _mnsgs/ Pose[] pose_projected # projected trajectory

geonetry nsgs/ Pose[] pose_resanpl ed # re-sanpled trajectory (for visualization)

sensor _nsgs/ Channel Fl oat 32[] channel s # additional information

Kinematic Model: ModelMsg

= Generic message for kinematic models

» Observation sequence Dy = (yi!,...,y:1)
= Model class M

= Model parameters §

articulation_msgs/ModelMsg.msg:

Header header # frame and tinmestanp

int32 id # user specified nodel id

string nanme # nanme of the nodel class (e.g. "rotational",
"prismatic", "pca_gp", "rigid")

articul ation_nsgs/ TrackMsg track # data trajectory underlying the nodel
articul ati on_nsgs/ ParamVsg[] parans # nodel paraneters

Kinematic Parameters: ParamMsg

= Generic message for parameters

= Type (prior, estimated, posterior)

= Name (e.g., "sigma_position”, “rot_radius”)
= Value (e.g., 0.01, 0.50,..)

articulation_msgs/ParamMsg.msg:

ui nt 8 PRI OR=0 # |nd|cates a prior nodel paraneter

(e "sigma_position")

ui nt 8 PARAM=1 # |nd|cates a estimted nodel paraneter
(e "rot _radius", the estimated radius)

ui nt 8 EVAL=2 # |nd|cates a cached evaluatlon of the nodel, given
the current trajectory
(e "l oglikelihood", the log Iikelihood of the
data glven t he nodel and its paraneters)

string nane # nane of the paraneter

fl oat 64 val ue # val ue of the paraneter

uint8 type # type of the paraneter (PRI OR, PARAM EVAL)

Kinematic Object:
ArticulatedODbjectMessage

= Generic message for articulated objects
= Multiple parts
= Multiple articulated links

articulation_msgs/ParamMsg.msg:
Header header # frame and tinmestanp

articul ati on_nsgs/ TrackMsg[] parts # observed trajectories for each object part
articul ati on_nsgs/ Paranisg[] parans # gl obal paraneters

articul ati on_nsgs/ Mbdel Msg[] nodel s # nodel s, describing relationshi ps between parts
vi sual i zation_nsgs/ Mar ker Array markers # marker visualization of nodel s/ object

Message Processing

= Articulated Link: model _learner_msg
= Subscribes to: /track (queue size 1)
= Publishes: /model

= Parameters:
= sigma_position (in meter)
= sigma_orientation (in radians)
= filter_models (“rigid prismatic rotational pca_gp”)

= What does it do?

= Fits model parameters
Estimates latent configurations of observations
Projects observations on model
Computes data likelihood and BIC score
Selects the best model

Services (1)

= Articulated Link: model learner srv

= Services:
= model_fit
= model_select
= model_eval

= Parameters:
= sigma_position (in meter)
= sigma_orientation (in radians)
= filter_models (“rigid prismatic rotational pca_gp”)

= What does it do?

= Same as model_learner_msg: fits models,
estimates configurations, evaluates data

likelihood, computes BIC score, selects best
model

Services (2)

= Articulated Object: structure learner

= Services:
= fit_models
= get_spanning_tree
= get_fast_graph
= get_graph
= Parameters:
= sigma_position (in meter)
= sigma_orientation (in radians)
= filter_models (“rigid prismatic rotational pca_gp”)

= What does it do?

= Fits models to all possible links, estimates
configurations, computes data likelihood,
estimates DOFs, selects best kinematic graph

Visualizing Data Trajectories

= roslaunch articulation_tutorials visualize tracks.lau

nch

. 340249373856 -0.244008978915 - 0.

. 332328278289 -0.241196125961 - 0.
. 331730517233 -0. 240507339642 - 0.
. 331761001802 -0.240391004141 -O0.
. 326387758676 -0.237534821253 -0.
. 326692999754 -0. 237495774032 - 0.
. 326458151573 - 0. 236229292153 - 0.

articulation_tutorials/demo_fitting/data/second_set

161821700704

. 3392470804 -0.243254309122 -0.161196313185

162826339162
162059956061
162215317578
162894338193
162320263447
161988473368

. 32643300294 -0. 235474401346 -0. 16226527964

. 326458151573 - 0. 236229292153 -0. 161988473368
. 322475144873 -0. 234904628909 -0. 163001371167
. 322396297379 -0.234578781317 -0.162827883268
. 322338438997 -0.233729046115 -0. 163104731452
. 31716772013 -0.233590696194 -0.162613189246

. 317140380085 -0.233046575927 -0. 162728855923
. 317360184512 -0. 232950213241 -0. 162209399286
. 317291194395 -0. 231950928639 -0. 162542156939
. 31231370597 -0.229828694249 -0. 162634424792

. 312256194198 - 0. 228424279769 - 0.
. 312015344514 -0. 227107330115 - 0.
. 306629576897 -0.226190024443
. 307101002477 -0.225363586474
. 307314399481 -0.224601172119
. 307924291011 -0.223965969122
. 302440458046 -0.223043961032
. 303022295196 -0.220621222734
. 299320666256 -0.220486293623
. 299403314865 -0.219964271221
. 299065053516 -0.219226704563

-]

oocooo0000O

TTO000000000O0O0O0O00O0O0O0O0OOOOOOOOOO

162708107274
162428803724
162693417499

. 163391447816
. 16312582421

162834221149
163117545449
162497012325

. 162602818856
. 163190275044
. 163054516178

/left_door/003.log:

http://www.ros.org/wiki/articulation_tutorials/Tuto
Getting started with Articulation Models

rials/

Visualizing Data Trajectories

<simple_publisher.py > - publishes

1 trajectory

/track [TrackMs(g]

+ ArticulatedTrack plugin

Visualizing Data Trajectories

= roslaunch articulation_tutorials visualize tracks.lau nch

sturm@lollypopi=/alufrros-pkel
File Edit Wiew Terminal Help

-1

) i~/alufr-ros-pke

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
Getting started with Articulation Models

Learning Models: Graph

<simple_publisher.py >

/track [TrackMs(g]

JL Fits all models
@odel_learner_srv > 4 and selects the
1 best one

/model [ModelMsg]

+ ArticulatedModel plugin

Learning Models: Video

= Using the articulation_rviz_plugin

File Edit Wiew Terminal Help

-falufr-ros-pke

=

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
Getting started with Articulation Models

Learning Models: Launch File

<launch>
<node pkg="articulation_models" type="simple_publis

$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
$(find articulation_tutorials)/demo_fitting/data/dr
$(find articulation_tutorials)/demo_fitting/data/ca
">

her.py" name="simple_publisher" output="screen“ args =

awer_one/001.log
binet_one/001.log
awer_one/002.log
binet_one/002.log
awer_one/003.log
binet_one/003.log
awer_one/004.log
binet_one/004.log
awer_one/005.log
binet_one/005.log
awer_one/006.log
binet_one/006.log
awer_one/007.log
binet_one/007.log
awer_one/008.log
binet_one/008.log
awer_one/009.log
binet_one/009.log
awer_one/010.log
binet_one/010.log

Simpl
publisher

</node>

<node pkg="articulation_models" type="model_learner _msg" name="model_learner" output="screen">

<param name="filter_models" value="rotational prisma tic"/> M
odel Learner

<param name="sigma_position" value="0.01"/>
<param name="sigma_orientation" value="10.00"/>

</node>
<node pkg="rviz" type="rviz" output="screen" name=" rviz" args="-d $(find
articulation_tutorials)/demo_fitting/fit_models.vcg "> RVI Z

</launch>

Many Interfaces

= Command-line

= Via simple_publisher.py, process_bag.py, and
others

= Publishes trajectory from text or bag files, or
directly from end-effector pose of PR2
= Python
= Via subscriber/publisher
= Via service calls

= C++

= Direct library bindings
= Fastest

Learning Models using a Webcam

<checkerboard_detector >

|

\ 4
/ - - - -
___pose_visualizer.py > < articulation_collector. py
<structure_learner >

| }
< rviz >

|

http://www.ros.org/wiki/articulation tutorials/Tuto rials/
ArticulationWebcambDemo

Learning Models using a Webcam
= Milka Chocolate Box

File Edit Wiew Terminal Help

= Live demo after the talk!

Learning Models using a Webcam

» Leibniz Cookies

= Live demo after the talk!

Learning Models using a Webcam

articulation_tutorials/ webcam_demo/ webcam_demo-1c m-4x6-4x5.launch:
<launch>
<node name="uvc_cam" pkg="uvc_cam?2" type="sender" o utput="log">

<param name="D" type="string" value="-0.0834232 0.12 0545 -0.0023918 0.0175383 0 /> We bca m
<param name="K" type="string" value="578.252 0 350.2 04 0575.115 207.606 00 1 "/>
<param name="R" type="string" value="10001000 1"/>
<param name="P" type="string" value="578.252 0 350.2 04 00575.115 207.606 0001 0 "/>
<param name="device" type="string" value="/dev/video 0"/>

<param name="width" type="int" value="640"/>
<param name="height" type="int" value="480"/>
<param name="fps" type="int" value="2"/>

</node>
<node name="image_proc" pkg="image_proc" type="imag e_proc" output="log"/>
<node name="pose_visualizer" pkg="checkerboard dete ctor2" type="pose_visualizer.py" output="screen"/>
<node pkg="checkerboard_detector2" type="checkerboa rd_detector2"
respawn="false" output="log" name="checkerboard_dete ctor"> C h ec ke r b Oa rd

<param name="display" type="int" value="0"/>

Detector

<param name="rect0_size x"type="double" value="0.01 ">
<param name="rect0_size y" type="double" value="0.01 ">
<param name="grid0_size_x" type="int" value="4"/>
<param name="grid0_size y" type="int" value="6"/>

<param name="rectl size x"type="double" value="0.01 ">
<param name="rectl size y"type="double" value="0.01 ">
<param name="grid1l_size_x" type="int" value="4"/>
<param name="grid1l_size_y" type="int" value="5"/>

</node>

</group>

Learning Models using a Webcam

[.-]
<node name="articulation_collector" pkg="articulati on_structure" type="articulation_collector.py"
output="screen">

<param name="samples" value="50"/> P O Se C 0 I I eCtO r

</node>

<node name="structure_learner" pkg="articulation_st ructure" type="structure_learner_srv" output="scree n">
<param name="sigma_position" value="0.01"/>

<param name="sigma_orientation" value="0.1"/> St r u Ct u re Lea r n e r

<param name="filter_models" value="rigid prismatic r otational"/>

</node>

<node pkg="rviz" type="rviz" output="screen" name=" rviz" args="-d $(find RVI Z
articulation_tutorials)/webcam_demo/webcam_demo.vcg ">

</launch>

Conclusions

= Bayesian framework for learning kinematic
model of articulated objects
= Robust model fitting
= Model comparison
= Structure selection
= Estimation of effective number of DOFs

= Stable code, open-source, BSD

= Fully integrated in ROS
= Command-line
= Python
= C++

Future Work

= Add more model classes

= Integrate with handle detector

= Store learned articulation models in maps
= | earn force profiles

References

J. Sturm, V. Pradeep, C. Stachniss, C. Plagemann, K.
Konolige, & W. Burgard. (2009). Learning kinematic models
for articulated objects. In Proc. of the Int. Joint Conf. on
Artificial Intelligence (IJCAI).

J. Sturm, K. Konolige, C. Stachniss, & W. Burgard. (2010).
Vision-based detection for learning articulation models of
cabinet doors and drawers in household environments. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA).

J. Sturm, A. Jain, C. Stachniss, C. Kemp, & W. Burgard.
(2010). Operating articulated objects based on experience. In
Proc. of the IEEE Int. Conf. on Intelligent Robot Systems
(IROS).

Thank you!

= Any Questions?

=) Live demo..

