[Documentation] [TitleIndex] [WordIndex

PR2 Gripper Transmission

Basic transmission equations:

$$\theta = ACOS [ \frac{ a^2 + b^2 - ( L_0 + \frac{MR \times I}{GR})^2 - h^2}{2 a b} ] + \theta_0 - \phi_0$$

$$ t = 2 * (t_0 + r ( sin( \theta ) - sin( \theta_0 ) ) )$$

Where

Jacobians

$$ \frac{d \theta }{d MR} = \frac{ -1 }{ \sqrt{1 - u^2} } \frac{d u}{d MR} $$

where

$$u = \frac{ a^2 + b^2 - h^2 - ( L_0 + MR \frac{I}{GR} )^2 }{2 a b}$$

$$\frac{d u}{d MR} = -\frac{d}{d MR} ( \frac{L_0^2}{2 a b} + MR \frac{L_0 I}{GR a b} + \frac{MR^2}{2ab} (\frac{I}{GR})^2 )  = - \frac{L_0 I}{GR a b} - \frac{MR}{ab} (\frac{I}{GR})^2 $$

Inverse Transform (from $$\theta$$ to $$MR$$)

$$ MR = \frac{GR}{I} [ -L_0 + \sqrt{ -(2 a b COS(\theta + \phi_0 - \theta_0) + h^2 - a^2 - b^2) } ]$$

$$\frac{d MR}{d \theta} = \frac{GR}{2 I} \frac{ 2 a b SIN(\theta + \phi_0 - \theta_0 )}{\sqrt{-(2 a b COS( \theta + \phi_0 - \theta_0) + h^2 - a^2 -b^2) }}$$

$$\theta = ASIN [ \frac{t - t_0}{r} + SIN( \theta_0) ]$$

$$\frac{d \theta}{d t} = \frac{1}{\sqrt{ 1 - u^2 }} \frac{d u }{d t}$$ where $$u = \frac{t - t_0}{r} + SIN( \theta_0) $$ and $$\frac{d u }{d t} = \frac{1}{r}$$

Transmissions

Denote

Propagate From Actuator State to Joint State $$(P_a,V_a,E_a) \rarr (P_j,V_j,E_j)$$

Motor angle in radians ($$P_a$$) is converted to motor revolutions ($$MR$$),

$$MR = \frac{P_a}{2 \pi}$$

and we have the transmission equation for gripper gap size above

$$P_j = t(\theta(MR))$$.

Motor angular rates in radians per second ($$V_a$$) is converted to revolutions per second,

$$\dot{MR} = \frac{V_a}{2 \pi}$$

and the gripper gap velocity is approximated by

$$V_j = \dot{t} = \dot{MR} * \frac{ d t}{d MR}$$

Given motor torque $$E_a$$, gripper effort $$E_j$$ is approximated by

$$E_j = E_a * \frac{d P_a}{d t} = I_m * \ddot{P_a} * \frac{d P_a}{d t} = I_m * \ddot{MR} * (2 \pi) * \frac{\frac{d MR}{d t}}{2 \pi} = MT * \frac{d MR}{d t}$$

where $$I_m$$ is the moment of inertia at the motor and $$MT$$ is defined as $$I_m * \ddot{MR} = \frac{E_a}{2 \pi}$$ is the motor torque in $$Kg * \frac{rev}{s^2}$$.

Propagate From Joint State to Actuator State $$(P_j,V_j,E_j) \rarr (P_a,V_a,E_a)$$

pretty much the reverse of previous section, given

$$t = P_j$$, inverse transmission gives $$MR(\theta(t))$$, and

$$P_a = MR 2 \pi$$.

$$V_a = \dot{MR} 2 \pi = V_j * \frac{d MR}{d t} 2 \pi$$

$$E_a = E_j \frac{d t}{d P_a} = E_j 2 \pi \frac{d t}{d MR}$$

Known Limitations


2024-12-07 15:01